Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Une nouvelle version de la microscopie à expansion (ExM), Magnify, modifiée pour une expansion allant jusqu’à 11 fois, conservant une gamme complète de classes de biomolécules et compatible avec un large éventail de types de tissus. Il permet d’interroger la configuration nanométrique de biomolécules à l’aide de microscopes conventionnels à diffraction limitée.
L’imagerie à l’échelle nanométrique de spécimens biologiques peut améliorer la compréhension de la pathogenèse de la maladie. Au cours des dernières années, la microscopie à expansion (ExM) s’est avérée être une alternative efficace et peu coûteuse à la microscopie optique à superrésolution. Cependant, il a été limité par le besoin d’agents d’ancrage spécifiques et souvent personnalisés pour conserver différentes classes de biomolécules dans le gel et par les difficultés liées à l’expansion des formats d’échantillons cliniques standard, tels que les tissus incorporés dans la paraffine fixés au formol, en particulier si des facteurs d’expansion plus importants ou des épitopes de protéines préservés sont souhaités. Ici, nous décrivons Magnify, une nouvelle méthode ExM pour une expansion robuste jusqu’à 11 fois dans un large éventail de types de tissus. En utilisant la méthacroléine comme ancrage chimique entre le tissu et le gel, Magnify retient plusieurs biomolécules, telles que des protéines, des lipides et des acides nucléiques, dans le gel, permettant ainsi l’imagerie à grande échelle nanométrique des tissus sur des microscopes optiques conventionnels. Ce protocole décrit les meilleures pratiques pour assurer une expansion tissulaire robuste et sans fissures, ainsi que des conseils pour la manipulation et l’imagerie des gels hautement expansés.
Les systèmes biologiques présentent une hétérogénéité structurelle, des membres et des organes jusqu’aux niveaux de protéines à l’échelle nanométrique. Par conséquent, une compréhension complète du fonctionnement de ces systèmes nécessite un examen visuel à travers ces échelles de taille. Cependant, la limite de diffraction de la lumière pose des problèmes de visualisation de structures inférieures à ~200-300 nm sur un microscope à fluorescence conventionnel. En outre, les méthodes optiques de super-résolution 1,2,3, telles que la déplétion par émission stimulée (STED), la microscopie de localisation photoactivée (PALM), la microscop....
Toutes les procédures expérimentales impliquant des animaux ont été menées conformément aux directives des National Institutes of Health (NIH) et ont été approuvées par le Comité institutionnel de soin et d’utilisation des animaux de l’Université Carnegie Mellon. Des échantillons de tissus humains ont été obtenus commercialement.
1. Préparation des réactifs et solutions mères
REMARQUE : Consultez le tableau des matériaux pour obtenir la liste des réactifs utilisés.
Si le protocole a été complété avec succès (figure 1), l’échantillon apparaîtra clair et plat après la dénaturation thermique; Tout pliage ou pli indique une homogénéisation incomplète. Un échantillon élargi avec succès sera 3 à 4,5 fois plus grand qu’avant l’expansion dans 1x PBS et 8-11 fois plus grand lorsqu’il sera complètement étendu dans ddH2O. La figure 3 montre des exemples d’images avant et après l’expansion d?.......
Ici, nous présentons le protocoleMagnify 17, une variante ExM qui peut retenir plusieurs biomolécules avec une seule ancre chimique et multiplier par 11 les échantillons cliniques FFPE difficiles grâce à la dénaturation thermique. Les principaux changements apportés à ce protocole qui le distinguent des autres protocoles ExM comprennent l’utilisation d’un gel reformulé qui reste mécaniquement robuste même lorsqu’il est complètement expansé, ainsi que l’utilisation de méthacro.......
Les auteurs déclarent le(s) intérêt(s) financier(s) concurrent(s) suivant(s) : Y.Z., A.K., Z.C. et B.R.G. ont inventé plusieurs inventions liées à Magnify et ExM.
Ce travail a été soutenu par l’Université Carnegie Mellon et la D.S.F. Charitable Foundation (Y.Z. et X.R.), les National Institutes of Health (N.I.H.) Prix du nouvel innovateur du réalisateur DP2 OD025926-01 et la Fondation Kauffman.
....Name | Company | Catalog Number | Comments |
4-hydroxy-TEMPO (4HT) | Sigma Aldrich | 176141 | Inhibitor |
6-well glass-bottom plate (#1.5 coverglass) | Cellvis | P06-1.5H-N | |
Acrylamide | Sigma Aldrich | A8887 | Gel Monomer component |
Ammonium persulfate (APS) | Sigma Aldrich | A3678 | Initiatior |
DAPI (1 mg/mL) | Thermo Scientific | 62248 | |
Decaethylene glycol mono dodecyl ether (C12E10) | Sigma Aldrich | P9769 | Non-ionic surfactant |
Diamond knife No. 88 CM | General Tools | 31116 | |
Ethanol | Pharmco | 111000200 | |
Ethanol | Pharmco | 111000200 | |
Ethylenediaminetetraacetic acid (EDTA) 0.5 M | VWR | BDH7830-1 | Homogenization Buffer Component |
Forceps | |||
Glycine | Sigma Aldrich | G8898 | Homogenization Buffer Component |
Heparin | Sigma Aldrich | H3393 | |
Methacrolein | Sigma Aldrich | 133035 | Anchoring Agent |
Micro cover Glass #1 (24x60mm) | VWR | 48393 106 | |
Micro cover Glass #1.5 (24x60mm) | VWR | 48393 251 | |
N,N,N′,N′- Tetramethylethylenediamine (TEMED) | Sigma Aldrich | T9281 | Accelerator |
N,N′-Methylenebisacrylamide (Bis) | Sigma Aldrich | M7279 | Gel Monomer component |
N,N-dimethylacrylamide (DMAA) | Sigma Aldrich | 274135 | Gel Monomer component |
Nunclon 4-Well x 5 mL MultiDish Cell Culture Dish | Thermo Fisher | 167063 | |
Nunclon 6-Well Cell Culture Dish | Thermo Fisher | 140675 | |
Nunc™ 15mL Conical | Thermo Fisher | 339651 | |
Nunc™ 50mL Conical | Thermo Fisher | 339653 | |
Orbital Shaker | |||
Paint brush | |||
pH Meter | |||
Phosphate Buffered Saline (PBS), 10x Solution | Fischer Scientific | BP399-1 | |
Polyethylene glycol 200 | Sigma Aldrich | P-3015 | |
Proteinase K (Molecular Biology Grade) | Thermo Scientific | EO0491 | |
Razor blade | Fischer Scientifc | 12640 | |
Safelock Microcentrifuge Tubes 1.5 mL | Thermo Fisher | 3457 | |
Safelock Microcentrifuge Tubes 2.0 mL | Thermo Fisher | 3459 | |
Sodium acrylate (SA) | AK Scientific | R624 | Gel Monomer component |
Sodium azide | Sigma Aldrich | S2002 | |
Sodium chloride | Sigma Aldrich | S6191 | |
Sodium citrate tribasic dihydrate | Sigma Aldrich | C8532-1KG | |
Sodium dodecyl sulfate (SDS) | Sigma Aldrich | L3771 | Homogenization Buffer Component |
Tris Base | Fischer Scientific | BP152-1 | Homogenization Buffer Component |
Triton X-100 | Sigma Aldrich | T8787 | |
Urea | Sigma Aldrich | U5378 | Homogenization Buffer Component |
Xylenes | Sigma Aldrich | 214736 | |
20x SSC | Thermo Scientific | AM9763 | |
Tween20 | Sigma Aldrich | P1379 | |
poly-L-lysine | Sigma Aldrich | P8920 |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon