É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Apresentamos aqui uma nova versão da microscopia de expansão (ExM), Magnify, que é modificada para expansão de até 11 vezes, conservando uma ampla gama de classes de biomoléculas, e é compatível com uma ampla gama de tipos de tecidos. Ele permite a interrogação da configuração em nanoescala de biomoléculas usando microscópios convencionais limitados por difração.
A obtenção de imagens em nanoescala de espécimes biológicos pode melhorar a compreensão da patogênese de doenças. Nos últimos anos, a microscopia de expansão (ExM) tem se mostrado uma alternativa eficaz e de baixo custo à microscopia óptica de super-resolução. No entanto, tem sido limitada pela necessidade de agentes de ancoragem específicos e muitas vezes personalizados para reter diferentes classes de biomoléculas dentro do gel e por dificuldades com a expansão de formatos de amostras clínicas padrão, como tecido fixado em formalina e embebido em parafina, especialmente se fatores de expansão maiores ou epítopos proteicos preservados forem desejados. Aqui, descrevemos o Magnify, um novo método ExM para expansão robusta de até 11 vezes em uma ampla gama de tipos de tecido. Ao usar a metacroleína como âncora química entre o tecido e o gel, o Magnify retém múltiplas biomoléculas, como proteínas, lipídios e ácidos nucléicos, dentro do gel, permitindo assim a obtenção de imagens em larga escala nanoescala dos tecidos em microscópios ópticos convencionais. Este protocolo descreve as melhores práticas para garantir uma expansão de tecido robusta e livre de rachaduras, bem como dicas para manuseio e geração de imagens de géis altamente expandidos.
Os sistemas biológicos exibem heterogeneidade estrutural, desde os membros e órgãos até os níveis de proteínas na nanoescala. Portanto, uma compreensão completa do funcionamento desses sistemas requer um exame visual através dessas escalas de tamanho. No entanto, o limite de difração da luz causa desafios na visualização de estruturas menores que ~200-300 nm em um microscópio de fluorescência convencional. Além disso, os métodos ópticos de super-resolução 1,2,3, como a depleção de emissão estimulada (STED), a microscopia de localização fotoativada (PALM), a microscopia de reconstrução óptica estocástica (STORM) e a microscopia de iluminação estruturada (SIM), embora poderosos, apresentam seus próprios desafios, pois requerem hardware e reagentes caros e, muitas vezes, têm tempos de aquisição lentos e baixa capacidade de obter imagens de grandes volumes em 3D.
A microscopia de expansão4 (ExM) fornece um meio alternativo de contornar o limite de difração da luz ancorando covalentemente biomoléculas em um gel de polímero intumescível em água e separando-as fisicamente, tornando-as resolúveis em microscópios ópticos convencionais. Uma infinidade de variantes do protocolo ExM foi desenvolvida desde a publicação original do ExM há menos de uma década, e esses protocolos permitem a incorporação direta de proteínas 5,6,7, RNA 8,9,10 ou lipídios11,12,13 na rede de gel, alterando a âncora química ou expandindo ainda mais a amostra (melhorando assim a resolução efetiva) em um único passo14 ou em vários passos iterativos15,16. Até recentemente, nenhum protocolo ExM poderia reter essas três classes de biomoléculas com uma única âncora química comercialmente disponível, fornecendo um gel mecanicamente resistente que poderia se expandir ~10 vezes em uma única rodada de expansão.
Aqui, apresentamos a Magnify17, uma adição recente ao arsenal ExM que usa metacroleína como âncora de biomolécula. A metacroleína forma ligações covalentes com tecidos como o do paraformaldeído, garantindo que várias classes de biomoléculas possam ser retidas dentro da rede de gel sem a necessidade de vários agentes de ancoragem específicos ou personalizados. Além disso, essa técnica pode expandir um amplo espectro de tecidos em até 11 vezes, incluindo amostras notoriamente desafiadoras, como amostras clínicas fixadas em formalina e emblocadas em parafina (FFPE). Métodos anteriores para expandir tais amostras mecanicamente rígidas exigiam digestão severa de proteases, tornando impossível a marcação de anticorpos de proteínas de interesse após a amostra ter sido expandida. Em contraste, esta técnica consegue a expansão de amostras clínicas FFPE usando uma solução desnaturante a quente, preservando assim epítopos de proteína inteira dentro do gel, que podem ser alvo de imagem pós-expansão (Figura 1).
Todos os procedimentos experimentais envolvendo animais foram conduzidos de acordo com as diretrizes do National Institutes of Health (NIH) e foram aprovados pelo Comitê Institucional de Cuidados e Uso de Animais da Universidade Carnegie Mellon. Amostras de tecido humano foram obtidas comercialmente.
1. Preparação dos reagentes e soluções de estoque
NOTA: Consulte a Tabela de materiais para obter uma lista dos reagentes usados.
2. Preparo tecidual para lâminas de tecidos clínicos arquivados e recém-preparados
NOTA: As etapas de pré-processamento do tecido diferem com base em como os espécimes são preparados.
3. Preparação tecidual para cérebro de camundongo fixado com paraformaldeído
4. Geleixização
NOTA: Este protocolo é adequado para todos os tipos de tecidos preparados para uso com esta técnica.
5. Digestão da amostra e expansão do tecido
NOTA: Este protocolo é adequado para todos os tipos de tecido.
6. Perfil de biomoléculas pós-expansão
Se o protocolo tiver sido concluído com sucesso (Figura 1), a amostra aparecerá clara e plana após a desnaturação por calor; qualquer dobramento ou enrugamento indica homogeneização incompleta. Uma amostra expandida com sucesso será 3-4,5 vezes maior do que antes da expansão em 1x PBS e 8-11 vezes maior quando totalmente expandida em ddH2O. A Figura 3 mostra imagens de exemplo pré e pós-expansão de amostra de rim humano FFPE de 5 μm de es...
Aqui, apresentamos o protocolo Magnify 17, uma variante de ExM que pode reter múltiplas biomoléculas com uma única ancoragem química e expandir espécimes clínicos FFPE desafiadores até11 vezes com desnaturação térmica. As principais mudanças neste protocolo que o distinguem de outros protocolos ExM incluem o uso de um gel reformulado que permanece mecanicamente robusto mesmo quando totalmente expandido, bem como o uso de metacroleína como âncora da biomolécula. As etapas mais crític...
Os autores declaram o(s) seguinte(s) interesse(s) financeiro(s) concorrente(s): Y.Z., A.K., Z.C. e B.R.G. inventaram várias invenções relacionadas à Magnify e ExM.
Este trabalho foi apoiado pela Carnegie Mellon University e pela D.S.F. Charitable Foundation (Y.Z. e X.R.), pelo National Institutes of Health (N.I.H.) Prêmio Novo Inovador do Diretor DP2 OD025926-01 e Fundação Kauffman.
Name | Company | Catalog Number | Comments |
4-hydroxy-TEMPO (4HT) | Sigma Aldrich | 176141 | Inhibitor |
6-well glass-bottom plate (#1.5 coverglass) | Cellvis | P06-1.5H-N | |
Acrylamide | Sigma Aldrich | A8887 | Gel Monomer component |
Ammonium persulfate (APS) | Sigma Aldrich | A3678 | Initiatior |
DAPI (1 mg/mL) | Thermo Scientific | 62248 | |
Decaethylene glycol mono dodecyl ether (C12E10) | Sigma Aldrich | P9769 | Non-ionic surfactant |
Diamond knife No. 88 CM | General Tools | 31116 | |
Ethanol | Pharmco | 111000200 | |
Ethanol | Pharmco | 111000200 | |
Ethylenediaminetetraacetic acid (EDTA) 0.5 M | VWR | BDH7830-1 | Homogenization Buffer Component |
Forceps | |||
Glycine | Sigma Aldrich | G8898 | Homogenization Buffer Component |
Heparin | Sigma Aldrich | H3393 | |
Methacrolein | Sigma Aldrich | 133035 | Anchoring Agent |
Micro cover Glass #1 (24x60mm) | VWR | 48393 106 | |
Micro cover Glass #1.5 (24x60mm) | VWR | 48393 251 | |
N,N,N′,N′- Tetramethylethylenediamine (TEMED) | Sigma Aldrich | T9281 | Accelerator |
N,N′-Methylenebisacrylamide (Bis) | Sigma Aldrich | M7279 | Gel Monomer component |
N,N-dimethylacrylamide (DMAA) | Sigma Aldrich | 274135 | Gel Monomer component |
Nunclon 4-Well x 5 mL MultiDish Cell Culture Dish | Thermo Fisher | 167063 | |
Nunclon 6-Well Cell Culture Dish | Thermo Fisher | 140675 | |
Nunc™ 15mL Conical | Thermo Fisher | 339651 | |
Nunc™ 50mL Conical | Thermo Fisher | 339653 | |
Orbital Shaker | |||
Paint brush | |||
pH Meter | |||
Phosphate Buffered Saline (PBS), 10x Solution | Fischer Scientific | BP399-1 | |
Polyethylene glycol 200 | Sigma Aldrich | P-3015 | |
Proteinase K (Molecular Biology Grade) | Thermo Scientific | EO0491 | |
Razor blade | Fischer Scientifc | 12640 | |
Safelock Microcentrifuge Tubes 1.5 mL | Thermo Fisher | 3457 | |
Safelock Microcentrifuge Tubes 2.0 mL | Thermo Fisher | 3459 | |
Sodium acrylate (SA) | AK Scientific | R624 | Gel Monomer component |
Sodium azide | Sigma Aldrich | S2002 | |
Sodium chloride | Sigma Aldrich | S6191 | |
Sodium citrate tribasic dihydrate | Sigma Aldrich | C8532-1KG | |
Sodium dodecyl sulfate (SDS) | Sigma Aldrich | L3771 | Homogenization Buffer Component |
Tris Base | Fischer Scientific | BP152-1 | Homogenization Buffer Component |
Triton X-100 | Sigma Aldrich | T8787 | |
Urea | Sigma Aldrich | U5378 | Homogenization Buffer Component |
Xylenes | Sigma Aldrich | 214736 | |
20x SSC | Thermo Scientific | AM9763 | |
Tween20 | Sigma Aldrich | P1379 | |
poly-L-lysine | Sigma Aldrich | P8920 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados