Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Leptomeningeal lymphatic endothelial cells (LLECs), a recently identified intracranial cell type, have poorly understood functions. This study presents a reproducible protocol for harvesting LLECs from mice and establishing in vitro primary cultures. This protocol is designed to enable researchers to delve into the cellular functions and potential clinical implications of LLECs.
Leptomeningeal lymphatic endothelial cells (LLECs) are a recently discovered intracranial cellular population with a unique distribution clearly distinct from peripheral lymphatic endothelial cells. Their cellular function and clinical implications remain largely unknown. Consequently, the availability of a supply of LLECs is essential for conducting functional research in vitro. However, there is currently no existing protocol for harvesting and culturing LLECs in vitro.
This study successfully harvested LLECs using a multi-step protocol, which included coating the flask with fibronectin, dissecting the leptomeninges with the assistance of a microscope, enzymatically digesting the leptomeninges to prepare a single-cell suspension, inducing the expansion of LLECs with vascular endothelial growth factor-C (VEGF-C), and selecting lymphatic vessel hyaluronic receptor-1 (LYVE-1) positive cells through magnetic-activated cell sorting (MACS). This process ultimately led to the establishment of a primary culture. The purity of the LLECs was confirmed through immunofluorescence staining and flow cytometric analysis, with a purity level exceeding 95%. This multi-step protocol has demonstrated reproducibility and feasibility, which will greatly facilitate the exploration of the cellular function and clinical implications of LLECs.
The newly discovered leptomeningeal lymphatic endothelial cells (LLECs) form a meshwork of individual cells within the leptomeninges, exhibiting a distinct distribution pattern when compared to peripheral lymphatic endothelial cells1,2. The cellular functions and clinical implications associated with LLECs remain largely uncharted territory. In order to pave the way for functional research on LLECs, it is imperative to establish an in vitro model for their study. Therefore, this study has devised a comprehensive protocol for the isolation and primary culture of LLECs.
This research received approval from the Animal Experiment Ethics Committee of Kunming Medical University (kmmu20220945). All experiments adhered to established animal care guidelines. Leptomeningeal lymphatic endothelial cells (LLECs) were harvested from male C57Bl/6J mice aged 6-8 weeks and weighing between 20-25 g. These mice were procured from Kunming Medical University in Kunming, China. The entire experimental procedure was conducted under strict sterile conditions. All the centrifugation steps are performed at roo.......
This study presents a reproducible, multi-step protocol for harvesting lymphatic endothelial cells (LLECs) from mice and subsequently establishing their primary culture in vitro. The key steps involve flask preparation and fibronectin coating, dissociation of leptomeninges, obtaining a single-cell suspension through enzymatic digestion, and inducing LLECs expansion with VEGF-C. LYVE-1-positive LLECs are then selectively isolated using magnetic-activated cell sorting (MACS). Finally, immunofluorescence staining a.......
The existing protocol for harvesting and culturing LLECs in vitro has not been previously reported. This study introduces a reproducible, multi-procedural protocol for harvesting and culturing LLECs from mouse leptomeninges.
While this multi-procedural protocol is reproducible, there are several key considerations. For example, fibronectin-coated T25 flasks promote the adhesion of LLECs and function by eliminating non-adherent cells, thereby ensuring a more homogenous cellular populat.......
The study was supported by grants from the National Natural Science Foundation of China (81960226, 81760223), the Natural Science Foundation of Yunnan Province (202001AS070045, 202301AY070001-011), and the Scientific Research Foundation of Yunnan Province Department of Education (2023Y0784).
....Name | Company | Catalog Number | Comments |
Block buffer | Beyotime | P0102 | Store aliquots at –4 °C |
Collagenase I | Solarbio | C8140 | Store aliquots at –20 °C |
DAPI | Beyotime | P0131 | Store aliquots at –20 °C |
DMEM | Solarbio | 11995 | Store aliquots at –4 °C |
D-PBS | Solarbio | D1041 | Store aliquots at –4 °C |
EGM-2 MV Bullet Kit | Lonza | C-3202 | Store aliquots at –4 °C |
FBS | Solarbio | S9010 | Store aliquots at –20 °C |
Fibronectin | Solarbio | F8180 | Store aliquots at –20 °C |
FlowJo Software | BD Biosciences | V10.8.1 | |
LYVE-1 antibody | eBioscience | 12-0443-82 | Store aliquots at –4 °C |
Magnetic separator | Miltenyi | 130-042-302 | Sterile before use |
Magnetic separator stand | Miltenyi | 130-042-303 | Sterile before use |
Microbeads | Miltenyi | 130-048-801 | Store aliquots at –4 °C |
P/S | Solarbio | P1400 | Store aliquots at –20 °C |
Papain | Solarbio | G8430-25g | Store aliquots at –20 °C |
PBS | Solarbio | D1040 | Store aliquots at –4 °C |
PDPN antibody | Santa | sc-53533 | Store aliquots at –4 °C |
PFA | Solarbio | P1110 | Store aliquots at –4 °C |
PROX1 antibody | Santa | sc-81983 | Store aliquots at –4 °C |
Selection column | Miltenyi | 130-042-401 | Sterile before use |
Trypsin | Gibco | 25200072 | Store aliquots at –20 °C |
VEGF-C | Abcam | ab51947 | Store aliquots at –20 °C |
VEGFR-3 antibody | Santa | sc-514825 | Store aliquots at –4 °C |
This article has been published
Video Coming Soon