Accedi

University of California, Los Angeles

21 ARTICLES PUBLISHED IN JoVE

image

Biology

Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos
Georgeann S. O'Brien 1, Sandra Rieger 1, Seanna M. Martin 1, Ann M. Cavanaugh 1, Carlos Portera-Cailliau 2, Alvaro Sagasti 1
1Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 2Departments of Neurology and Neurobiology, University of California, Los Angeles

Here we describe a method for mounting zebrafish embryos for long-term imaging, two-photon imaging and tissue-damage techniques, and time-lapse confocal imaging.

image

Biology

Preparation of Aplysia Sensory-motor Neuronal Cell Cultures
Yali Zhao 1, Dan O. Wang 1, Kelsey C. Martin 1,2,3
1Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 2Dept. of Biological Chemistry, University of California, Los Angeles, 3Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles

Primary cultures of Aplysia sensory-motor neurons provide a model preparation for studying synapse formation and synaptic plasticity in vitro. This video demonstrates the identification and microdissection of sensory and motor neurons from Aplysia ganglia as well as the methods for establishing and maintaining sensory-motor neurons in culture.

image

Biology

Lensless On-chip Imaging of Cells Provides a New Tool for High-throughput Cell-Biology and Medical Diagnostics
Onur Mudanyali 1, Anthony Erlinger 1, Sungkyu Seo 1, Ting-Wei Su 1, Derek Tseng 1, Aydogan Ozcan 1,2
1Electrical Engineering Department, University of California, Los Angeles, 2California NanoSystems Institute, University of California, Los Angeles

Lensfree on-chip imaging and characterization of cells is illustrated. This on-chip cell imaging approach provides a compact and cost-effective tool for medical diagnostics and high-throughput cell biology applications, making it especially suitable for resource poor settings.

image

Biology

Aseptic Laboratory Techniques: Volume Transfers with Serological Pipettes and Micropipettors
Erin R. Sanders 1
1Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles

When working in a laboratory, it is imperative to minimize sources of contamination. Aseptic technique refers to procedures that permit transfer of cultures and reagents while avoiding contact with non-sterile surfaces. Serological pipettes and micropipettors are used to measure precise volumes without compromising sterility of solutions used in experiments.

image

JoVE Journal

Use of Human Perivascular Stem Cells for Bone Regeneration
Aaron W. James *1, Janette N. Zara *2, Mirko Corselli 2, Michael Chiang 1, Wei Yuan 2, Virginia Nguyen 1, Asal Askarinam 1, Raghav Goyal 1, Ronald K. Siu 3, Victoria Scott 1, Min Lee 3, Kang Ting 1, Bruno Péault 2,4, Chia Soo 2
1Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, 2UCLA and Orthopaedic Hospital, Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA, 3Department of Bioengineering, UCLA, 4Center for Cardiovascular Science, University of Edinburgh

Human perivascular stem cells (PSCs) are a novel stem cell class for skeletal tissue regeneration similar to mesenchymal stem cells (MSCs). PSCs can be isolated by FACS (fluorescence activated cell sorting) from adipose tissue procured during standard liposuction procedures, then combined with an osteoinductive scaffold to achieve bone formation in vivo.

image

Biology

Aseptic Laboratory Techniques: Plating Methods
Erin R. Sanders 1
1Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles

When working with media and reagents used to culture microorganisms, aseptic technique must be practiced to ensure contamination is minimized. A variety of plating methods are routinely used to isolate, propagate, or enumerate bacteria and phage, all of which incorporate procedures that maintain the sterility of experimental materials.

image

Bioengineering

Lensless Fluorescent Microscopy on a Chip
Ahmet F. Coskun 1, Ting-Wei Su 1, Ikbal Sencan 1, Aydogan Ozcan 1
1Department of Electrical Engineering, University of California, Los Angeles

A lensless on-chip fluorescent microscopy platform is demonstrated that can image fluorescent objects over an ultra-wide field-of-view of e.g., >0.6-8 cm2 with <4μm resolution using a compressive sampling based decoding algorithm. Such a compact and wide-field fluorescent on-chip imaging modality could be valuable for high-throughput cytometry, rare-cell research and microarray-analysis.

image

Biology

Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Todd C. Lorenz 1
1Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles

PCR has emerged as a common technique in many molecular biology laboratories. Provided here is a quick guide to several conventional PCR protocols. Because each reaction is a unique experiment, optimal conditions required to generate a product vary. Understanding the variables in a reaction will greatly enhance troubleshooting efficiency, thereby increasing the chance to obtain the desired result.

image

Bioengineering

Lensfree On-chip Tomographic Microscopy Employing Multi-angle Illumination and Pixel Super-resolution
Serhan O. Isikman 1, Waheb Bishara 1, Aydogan Ozcan 1,2,3
1Electrical Engineering Department, University of California, Los Angeles , 2Bioengineering Department, University of California, Los Angeles , 3California NanoSystems Institute, University of California, Los Angeles

Lensfree optical tomography is a three-dimensional microscopy technique that offers a spatial resolution of <1 μm × <1 μm × <3 μm in x, y and z dimensions, respectively, over a large imaging-volume of 15-100 mm3, which can be particularly useful for integration with lab-on-a-chip platforms.

image

Biology

Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM)
Lawren Sack 1, Christine Scoffoni 1
1University of California, Los Angeles

We describe a relatively rapid (30 min) and realistic method for simultaneously measurement of leaf hydraulic conductance (Kleaf) and stomatal conductance (gs) for transpiring excised leaves. The method can be modified to measure the light and dehydration responses of Kleaf and gs.

image

Medicine

Repair of a Critical-sized Calvarial Defect Model Using Adipose-derived Stromal Cells Harvested from Lipoaspirate
David D. Lo *1,2, Jeong S. Hyun *1,3, Michael T. Chung 1, Daniel T. Montoro 1, Andrew Zimmermann 1, Monica M. Grova 1,4, Min Lee 5, Derrick C. Wan 1, Michael T. Longaker 1
1Department of Surgery, Stanford University , 2Department of Surgery, Duke University , 3Department of Surgery, Saint Joseph Mercy Hospital, 4School of Medicine, University of California, San Francisco , 5School of Dentistry, University of California, Los Angeles

This protocol describes the isolation of adipose-derived stromal cells from lipoaspirate and the creation of a 4 mm critical-sized calvarial defect to evaluate skeletal regeneration.

image

Bioengineering

Bacterial Detection & Identification Using Electrochemical Sensors
Colin Halford 1,2, Vincent Gau 3, Bernard M. Churchill 2, David A. Haake 2,4,5
1Research Service, Veterans Affairs Greater Los Angeles Healthcare System, 2Department of Urology, The David Geffen School of Medicine, University of California, Los Angeles , 3GeneFluidics, 4Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, 5Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles

We describe an electrochemical sensor assay method for rapid bacterial detection and identification. The assay involves a sensor array functionalized with DNA oligonucleotide capture probes for ribosomal RNA (rRNA) species-specific sequences. Sandwich hybridization of target rRNA with the capture probe and a horseradish peroxidase-linked DNA oligonucleotide detector probe produces a measurable amperometric current.

image

Immunology and Infection

Isolation of Lymphocytes from Mouse Genital Tract Mucosa
Janina Jiang 1, Kathleen A. Kelly 1,2
1Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles , 2California NanoSystems

An efficient way to isolate lymphocytes from mouse genital tract is described. This method takes advantage of enzyme digestion and Percoll gradient separation to allow efficient isolation. This technique is also adaptable to for use in other species

image

Biology

Real-time Analyses of Retinol Transport by the Membrane Receptor of Plasma Retinol Binding Protein
Riki Kawaguchi 1, Ming Zhong 1, Hui Sun 1
1Department of Physiology, Jules Stein Eye Institute and Howard Hughes Medical Institute, University of California, Los Angeles

Here we describe an optimized technique to produce high-quality vitamin A/RBP complex and two real-time monitoring techniques to study vitamin A transport by STRA6, the RBP receptor.

image

Neuroscience

Optogenetic Activation of Zebrafish Somatosensory Neurons using ChEF-tdTomato
Ana Marie S. Palanca 1, Alvaro Sagasti 1
1Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles

Optogenetic techniques have made it possible to study the contribution of specific neurons to behavior. We describe a method in larval zebrafish for activating single somatosensory neurons expressing a channelrhodopsin variant (ChEF) with a diode-pumped solid state (DPSS) laser and recording the elicited behaviors with a high-speed video camera.

image

Neuroscience

Recording Electrical Activity from Identified Neurons in the Intact Brain of Transgenic Fish
Yali Zhao 1, Nancy L. Wayne 1
1Department of Physiology, University of California, Los Angeles

In this video, we will demonstrate how to record electrical activity from identified single neurons in a whole brain preparation, which preserves complex neural circuits. We use transgenic fish in which gonadotropin-releasing hormone (GnRH) neurons are genetically tagged with a fluorescent protein for identification in the intact brain preparation.

image

Bioengineering

Wide-field Fluorescent Microscopy and Fluorescent Imaging Flow Cytometry on a Cell-phone
Hongying Zhu 1, Aydogan Ozcan 1,2,3
1Electrical Engineering Department, University of California, Los Angeles , 2Bioengineering Department, University of California, Los Angeles , 3California NanoSystems Institute (CNSI), University of California, Los Angeles

We review our recent results on the integration of fluorescent microscopy and imaging flow cytometry tools on a cell-phone using compact and cost-effective opto-fluidic attachments. These cell-phone based micro-analysis devices might be useful for cytometric analysis, such as performing various cell counting tasks as well as for high-throughput screening of e.g., water samples in resource limited settings.

image

Immunology and Infection

High-throughput Parallel Sequencing to Measure Fitness of Leptospira interrogans Transposon Insertion Mutants During Golden Syrian Hamster Infection
Kristel Lourdault 1,2, James Matsunaga 1,2, Karen V. Evangelista 1,2, David A. Haake 1,2,3,4
1Veterans Affairs Greater Los Angeles Healthcare System, 2Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles, 3Departments of Urology, David Geffen School of Medicine at University of California Los Angeles, 4Departments of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles

We describe here a technique that combines transposon mutagenesis with high-throughput sequencing to identify and quantify transposon leptospiral mutants in tissues after a challenge of hamsters. This protocol can be used to screen mutants for survival and dissemination in animals and can also be applied to in vitro studies.

image

Medicine

Intra-Operative Neural Monitoring of Thyroid Surgery in a Porcine Model
Che-Wei Wu 1,2,3, Tzu-Yen Huang 2, Hui-Chun Chen 4, Hsiu-Ya Chen 5, Tsung-Yi Tsai 2, Pi-Ying Chang 5, Yi-Chu Lin 2, Hsin-Yi Tseng 2, Pao-Chu Hun 6, Xiaoli Liu 7, Hui Sun 7, Gregory W. Randolph 8, Gianlorenzo Dionigi 9, Feng-Yu Chiang 2,3, I-Cheng Lu 5,10,11
1Department of Otorhinolaryngology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, 2Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 3Department of Otorhinolaryngology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, 4Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 5Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 6Laboratory Animal Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 7Department of Thyroid and Parathyroid Surgery, China-Japan Union Hospital and Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin University, 8Division of Thyroid and Parathyroid Endocrine Surgery, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary; Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital; Department of Otology and Laryngology, Harvard Medical School, 9Division for Endocrine Surgery, Department of Human Pathology in Adulthood and Child-hood "G. Barresi", University Hospital G. Martino, University of Messina, 10Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, 11Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University

This study aims to develop a standard protocol of intra-operative neural monitoring of thyroid surgery in a porcine model. Here, we present a protocol to demonstrate general anesthesia, to compare different types of electrodes, and to investigate the electrophysiological characteristics of the normal and injured recurrent laryngeal nerves.

image

Biology

In Vivo Surface Electrocardiography for Adult Zebrafish
Yali Zhao 1, Morgan Yun 1, Sean A. Nguyen 1, Michelle Tran 1, Thao P. Nguyen 1
1Department of Medicine, Division of Cardiology, the Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA

Here, we present a reliable, minimally invasive, and cost-effective method to record and interpret electrocardiograms in live anesthetized adult zebrafish.

image

JoVE Core

Direct Reprogramming of Mouse Fibroblasts into Melanocytes
Yi-Xuan Zhang 1,2, Li-Ping Liu 1,2, Ming Jin 1,2, Hui Sun 1,2, Han-Lin Zhang 1,2, Yu-Mei Li 1,2
1Institute for Regenerative Medicine, Jiangsu University, 2Department of Dermatology, Affiliated Hospital of Jiangsu University

Here, we describe an optimized direct reprogramming system for melanocytes and a high-efficiency, concentrated virus packaging system that ensures smooth direct reprogramming.

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2024 MyJoVE Corporation. Tutti i diritti riservati