サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This paper describes a method for magnetic bead-based isolation of murine endothelial cells from dermal lymphatic capillaries. The isolated lymphatic endothelial cells can be used for downstream in vitro experiments and protein expression analysis.

Abstract

The lymphatic system participates in the regulation of immune surveillance, lipid absorption, and tissue fluid balance. The isolation of murine lymphatic endothelial cells is an important process for lymphatic research, as it allows the performance of in vitro and biochemical experiments on the isolated cells. Moreover, the development of Cre-lox technology has enabled the tissue-specific deficiency of genes that cannot be globally targeted, leading to the precise determination of their role in the studied tissues. The dissection of the role of certain genes in lymphatic physiology and pathophysiology requires the use of lymphatic-specific promoters, and thus, the experimental verification of the expression levels of the targeted genes.

Methods for efficient isolation of lymphatic endothelial cells from wild-type or transgenic mice enable the use of ex vivo and in vitro assays to study the mechanisms regulating the lymphatic functions and the identification of the expression levels of the studied proteins. We have developed, standardized and present a protocol for the efficient isolation of murine dermal lymphatic endothelial cells (DLECs) via magnetic bead purification based on LYVE-1 expression. The protocol outlined aims to equip researchers with a tool to further understand and elucidate important players of lymphatic endothelial cell functions, especially in facilities where fluorescence-activated cell sorting equipment is not available.

Introduction

The lymphatic system plays a pivotal role in human physiology. It is considered a vital homeostatic factor, that facilitates important functions, such as the maintenance of tissue-plasma fluid balance, immune surveillance, and lipid absorption1, as well as recently-identified functions, such as the repair ability of the heart2 and regenerative capacity of bone and hematopoiesis3. Despite the significant role of the lymphatic system, several aspects of the role of the lymphatics, as well as the molecular mechanisms governing certain physiological parameters and responses remain elusive. Moreover, l....

Protocol

Animal studies were performed according to the approved protocols by the Institutional Animal Care and Use Committee (IACUC) of Texas Tech University Health Sciences Center (TTUHSC) for the experiments at TTUHSC and by the Veterinary Administration of the Prefecture of Western Greece according to Directive 2010/63 for the experiments at the University of Patras. Diligently follow waste disposal regulations when disposing of animal waste materials.

1. Isolation of mouse dermis

Representative Results

The method was developed to identify the protein expression of a small GTPase, RhoA, the coding gene of which was floxed in both alleles and deleted under the effect of the tamoxifen-inducible lymphatic endothelial-specific promoter Prox1-CreERT2 18. The isolated LECs can be cultured for up to four generations, after which they become senescent. They have been frozen, thawed, and successfully stimulated with angiopoietin-2. Due to the limited number of cell passages, we have no.......

Discussion

The lymphatic system is an important regulator of the homeostatic function of the body, with the most important functions being the maintenance of fluid plasma, removal of cellular metabolism byproducts and toxic molecules, lipid absorption, and immune cell trafficking1,19. The identification of appropriate markers has provoked a burst in new data in the lymphatics field, revealing novel functions of the lymphatic vasculature, such as their role in the repair and.......

Acknowledgements

This work was supported by the Hellenic Foundation for Research and Innovation (00376), the National Institutes of Health, the National Cancer Institute (NCI) [Grant R15CA231339], the Texas Tech University Health Sciences Center (TTUHSC) School of Pharmacy Office of the Sciences grant (to C.M.M.), and by the College of Pharmacy, University of Louisiana Monroe start-up funding, the National Institutes of Health (NIH) through the National Institute of General Medical Science [Grant P20 GM103424-21] and the Research Competitiveness Subprogram (RCS) of the Louisiana Board of Regents through the Board of Regents Support Fund (LEQSF(2021-24)-RD-A-23) (to G.M.). The common T....

Materials

NameCompanyCatalog NumberComments
0.2 μm Syringe FiltersFisher Scientific09-719C
100 mm Tissue Culture DishesFisher ScientificFB012924
60 mm Tissue Culture DishesFisher ScientificFB012921
Animal Hair ClipperWahl
Antibiotic-Antimycotic Solution 100xFisher Scientific15240-062
Blunt ForcepsFine Science Tools11992-20
Bovine Serum AlbuminSigma-AldrichA4919
Cell Strainer 40 μmFisher Scientific542040
Cell Strainer 70 μmFisher Scientific542070
CO2 Incubator
Collagen I, High Concentration Rat TailCorning354249dilute in 0.02 M Acetic Acid in H2O
Collagenase Type IILife Technologies17101-015
DispaseLife Technologies17105-041
DMEMFisher Scientific11-995-073
DNAse I Solution (2,500 U/mL)Thermo Scientific90083
Dynal MPC-L Magnetic Particle ConcentratorInvitrogen120-21D
EDTASigma-Aldrich3690
Endothelial Cell Growth Base Medium & Supplement (LEC medium)R&D SystemsCCM027
Euthanasia chamberEuthanex Corporation
Fine ForcepsFine Science Tools11255-20
Fine Scissors-SharpFine Science Tools14060-10
FITC anti-mouse F4/80 AntibodyBiolegend123107
Goat Anti-Rabbit IgG Magnetic BeadsNew England BiolabsS1432S
LARC-A E-Z Anesthesia Induction ChamberEuthanex Corporation
MagnaBind Goat Anti-Rabbit IgG BeadsThermo Scientific21356
Paraformaldehyde Solution 4% in PBSFisher ScientificAAJ19943K2
Phosphate Buffered Saline (PBS)Fisher ScientificSH30256FS
Rabbit Anti-Mouse LYVE-1ReliaTech GmbH103-PA50
Rotating/Shaking Incubator
Round-Bottom Polypropylene TubesCorning352063
Syringe Filters w 0.2 μm PoresFisher Scientific09-719C
Trypsin-EDTAFisher Scientific25-300-120

References

  1. Oliver, G., Kipnis, J., Randolph, G. J., Harvey, N. L. The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell. 182 (2), 270-296 (2020).
  2. Liu, X., et al.

Explore More Articles

Murine Dermal Lymphatic Endothelial CellsMagnetic Bead based IsolationLYVE 1 ExpressionLymphatic Endothelial Cell PhysiologyLymphatic SystemCre lox TechnologyLymphatic specific PromotersLymphatic FunctionsLymphatic ResearchEx Vivo And In Vitro Assays

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved