サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Lung-on-chip models surpass traditional 2D cultures by mimicking the air-liquid interface and endothelial cell perfusion, simulating blood flow and nutrient exchange crucial for lung physiology studies. This enhances lung research relevance, offering a dynamic, physiologically accurate environment to advance the understanding and treatment of respiratory infections.

Abstract

We introduce an advanced immunocompetent lung-on-chip model designed to replicate the human alveolar structure and function. This innovative model employs a microfluidic-perfused biochip that supports an air-liquid interface mimicking the environment in the human alveoli. Tissue engineering is used to integrate key cellular components, including endothelial cells, macrophages, and epithelial cells, to create a representative tissue model of the alveolus. The model facilitates in-depth examinations of the mucosal immune responses to various pathogens, including viruses, bacteria, and fungi, thereby advancing our understanding of lung immunity. The primary goal of this protocol is to provide details for establishing this alveolus-on-chip model as a robust in vitro platform for infection studies, enabling researchers to closely observe and analyze the complex interactions between pathogens and the host's immune system within the pulmonary environment. This is achieved through the application of microfluidic-based techniques to simulate key physiological conditions of the human alveoli, including blood flow and biomechanical stimulation of endothelial cells, alongside maintaining an air-liquid interface crucial for the realistic exposure of epithelial cells to air. The model system is compatible with a range of standardized assays, such as immunofluorescence staining, cytokine profiling, and colony-forming unit (CFU)/plaque analysis, allowing for comprehensive insights into immune dynamics during infection. The Alveolus-on-chip is composed of essential cell types, including human distal lung epithelial cells (H441) and human umbilical vein endothelial cells (HUVECs) separated by porous polyethylene terephthalate (PET) membranes, with primary monocyte-derived macrophages strategically positioned between the epithelial and endothelial layers. The tissue model enhances the ability to dissect and analyze the nuanced factors involved in pulmonary immune responses in vitro. As a valuable tool, it should contribute to the advancement of lung research, providing a more accurate and dynamic in vitro model for studying the pathogenesis of respiratory infections and testing potential therapeutic interventions.

Introduction

The human lung has a remarkable role in respiration and immune defense, with complex interactions between the immune responses of the alveolar mucosa1. The ability of the alveoli to create an efficient immune response is vital for preventing lung infections and securing pulmonary health. Since the lungs are constantly exposed to a wide range of potential risks, including bacteria, viruses, fungi, allergies, and particulate matter, understanding the complexities of alveolar mucosal immune responses is critical for discovering the mechanisms behind respiratory infections, inflammatory disorders and treating pulmonary diseases

Protocol

HUVEC cells are isolated from umbilical cords and used up to passage 4. Primary monocytes are isolated from healthy donors from whole blood. The study was approved by the ethics committee of the Jena University Hospital, Jena, Germany (3939-12/13). According to the Declaration of Helsinki, all individuals donating cells for the study gave their informed consent.

1. Day 1: Preparation of the biochip

  1. The biochips are available in different sizes and models. For exper.......

Representative Results

An examination of morphological alterations and the expression of marker proteins could be performed using immunofluorescence staining. After co-culturing for 14 days, the vascular and epithelial sides are analyzed for expression of respective cell markers. This method is useful for studying the interactions and integrity of vascular and epithelial components, which is essential for disease modeling as a functional biological readout related to infection. Immunofluorescence staining could be supported by quantifying anal.......

Discussion

The alveolus-on-chip model represents a multilayered tissue model of the human alveolus, integrating essential cell types of the lower respiratory tract, including lung epithelial cells, endothelial cells, and macrophages, cultured in an organotypic arrangement at an ALI with medium perfusion of the endothelial lining. Cells of different layers express specific cell marker proteins such as E-cadherin, a calcium-dependent adhesion molecule of lung epithelial cells, which is central in establishing intercellular epithelial.......

Acknowledgements

H.K. and A.S.M. acknowledge funding from the Leibniz Science-Campus InfectoOptics Jena, financed by the funding line Strategic Networking of the Leibniz Association. M.A. and A.S.M. were supported by the IGF project IMPROVE funded by the Federal Ministry for Economic Affairs and Energy on the basis of a resolution of the German Bundestag. A.S.M further acknowledges financial support by the Cluster of Excellence Balance of the Microverse under Germany's Excellence Strategy - EXC 2051 - Project-ID 690 390713860.

....

Materials

NameCompanyCatalog NumberComments
Consumables
Cellcounting chamber slides (Countess)InvitrogenC10283
Cell culture Multiwell Plates, 24 Well, sterilGreiner Bio-One662 160
Cell culture Multiwell Plates, 6 Well, sterilGreiner Bio-One657 160
Coverslips (24x40mm; #1.5)Menzel-Gläser15747592
Eco wipesDr. Schuhmacher00-915-REW10003-01
Eppies 2.0Sarstedt72.691
Eppis 0.5Sarstedt72.699
Eppis 1.5Sarstedt72.690.001
Falcons 15mLGreiner Bio-One188 271-TRI
Falcons 50mLGreiner Bio-One227 261-TRI
Gauze swabNobaPZN 2417767
Gloves Nitril 3000Meditrade1280
Microscope slidesMenzel-GläserAAAA000001##12E
Multiwell Plates 24 Well, sterileGreiner Bio-One662 160
Pasteur pipettes (glass) 150mmAssistent40567001
Pasteur pipettes (glass) 230mmAssistent40567002
Round-bottom tubes (PS, 5mL)Falcon352052
Safety-Multifly-Set, 20G, 200mmSarstedt85.1637.235
ScalpelsDahlhausen11.000.00.715
Serological pipettes 10mLGreiner Bio-One607 160-TRI
Serological pipettes 25mLGreiner Bio-One760 160-TRI
Serological pipettes 2mLGreiner Bio-One710 160-TRI
Serological pipettes 50mLGreiner Bio-One768 160-TRI
Serological pipettes 5mLGreiner Bio-One606 160-TRI
S-Monovette, 7,5ml Z-GelSarstedt1.1602
S-Monovette, 9,0ml K3ESarstedt02.1066.001
Softasept NBraun3887138
T25 flaskGreiner Bio-One690 960
Tips sterile 10µLGreiner Bio-One771 261
Tips sterile 1250µLGreiner Bio-One750 261
Tips sterile 300µLGreiner Bio-One738 261
Tips unsterile 10µLGreiner Bio-One765 290
Tips unsterile 1000µLGreiner Bio-One739 291
Tips unsterile 200µLGreiner Bio-One686 290
Tweezers (Präzisionspinzette DUMONT abgewinkelt Inox08, 5/45, 0,06 mm)RothK343.1
Chemicals
Descosept AFDr. SchuhmacherN-20338
Ethanol 96%Nordbrand-Nordhausen410
Fluorescein isothiocyanate (FITC)-dextran (3-5kDa)Sigma AldrichFD4-100MG
Fluorescent Mounting MediumDakoS3023
MethanolVWR20847.295
SaponinFluka47036
TergazymeAlconox1304-1
Cell culture
Collagen IVSigma-AldrichC5533-5MG
DexametasonSigma-AldrichD4902
DPBS (-/-)LonzaBE17-516F
DPBS (+/+)LonzaBE17-513F
EDTA solutionSigma-AldrichE788S
Endothelial Cell Growth MediumPromocellC-22020
Endothelial Cell Growth Medium supplement mixPromocellC-39225
Fetal bovine SerumSigma-AldrichE2129-10g
H441ATCC
Human recombinant GM-CSFPeprotech300-30
LidocainSigma-AldrichL5647-15G
Penicillin-Streptomycin (10,000 U/mL)Gibco15140-122 /-163
RPMIGibco72400047
Trypane blue stain 0.4%InvitrogenT10282
TrypsinGibco15090-046
Primary antibodies
Cadherin-5 / VE-Cadherin (goat)BD610252
CD68 (rabbit)CellSignaling76437
E-Cadherin (goat)R&DAF748
SP-A (mouse)Abcamab51891
Secondary antibodies
AF488 (donkey anti mouse)InvitrogenR37114
AF647 (donkey anti mouse)invitrogenA31571
AF647 (donkey anti rabbit)InvitrogenA31573
Cy3 (donkey anti goat)jackson research705-165-147
DAPI (4',6-Diamidino-2-Phenylindole, Dilactate)InvitrogenD3571
Microfluidic
ChipDynamic 42BC002
Male Luer Lock (small)ChipShop09-0503-0270-09
Male mini luer plugs, row of four,PP, greenMicrofluidic chipshop09-0558-0336-11
Male mini luer plugs, row of four,PP, opaqueMicrofluidic chipshop09-0556-0336-09
Male mini luer plugs, row of four,PP, redMicrofluidic chipshop09-0557-0336-10
PlugsCole ParmerGZ-45555-56
Reservoir 4.5mLChipShop16-0613-0233-09
TubingDynamic 42ST001
Equipment
AutoclaveTuttnauer5075 ELV
CentrifugeEppendorf5424
CO2 IncubatorHeracell150i
Countess automated cell counterInvitrogenC10227
FlowcytometerBDFACS Canto II
Freezer (-20 °C)LiebherrLCexv 4010
Freezer (-80 °C)HeraeusHerafreeze HFU 686
FridgeLiebherrLCexv 4010
Heraeus MultifugeThermo ScientificX3R
MicroscopeLeicaDM IL LED
Orbital shakerHeidolphReax2000
Peristaltic pumpREGLO Digital MS-4/12ISM597D
Pipettes 10µLEppendorf Research plus3123000020
Pipettes 100µLEppendorf Research plus3123000047
Pipettes 1000µLEppendorf Research plus3123000063
Pipettes 2.5µLEppendorf Research plus3123000012
Pipettes 20µLEppendorf Research plus3123000039
Pipettes 200µLEppendorf Research plus3123000055
ScaleSartorius6101
ScaleSartoriusTE1245
Sterile benchKojairBiowizard SL-130
WaterbathJulaboSW-20C
Fluorescence Microscope Setup
Apotome.2Zeiss
Illumination deviceZeissHXP 120 C
MicroscopeZeissAxio Observer 5
Optical SectioningZeissApoTome
Power Supply MicroscopeZeissEplax Vp232
Software
ZEN Blue EditionZeiss

References

  1. Mettelman, R. C., Allen, E. K., Thomas, P. G. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity. 55 (5), 749-780 (2022).
  2. Artzy-Schnirman, A., et al.

Explore More Articles

Alveolus on chipImmunocompetentLung on chipAlveolar Mucosal Immune ResponsesMicrofluidicAir liquid InterfaceTissue EngineeringEndothelial CellsMacrophagesEpithelial CellsPathogensLung ImmunityIn Vitro Infection ModelPhysiological ConditionsCytokine ProfilingColony forming Unit AnalysisH441 CellsHUVECsPrimary Monocyte derived MacrophagesRespiratory InfectionsTherapeutic Interventions

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved