サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we outline a protocol for using complementary metal-oxide-semiconductor high-density microelectrode array systems (CMOS-HD-MEAs) to record seizure-like activity from ex vivo brain slices.

Abstract

Complementary metal-oxide-semiconductor high-density microelectrode array (CMOS-HD-MEA) systems can record neurophysiological activity from cell cultures and ex vivo brain slices in unprecedented electrophysiological detail. CMOS-HD-MEAs were first optimized to record high-quality neuronal unit activity from cell cultures but have also been shown to produce quality data from acute retinal and cerebellar slices. Researchers have recently used CMOS-HD-MEAs to record local field potentials (LFPs) from acute, cortical rodent brain slices. One LFP of interest is seizure-like activity. While many users have produced brief, spontaneous epileptiform discharges using CMOS-HD-MEAs, few users reliably produce quality seizure-like activity. Many factors may contribute to this difficulty, including electrical noise, the inconsistent nature of producing seizure-like activity when using submerged recording chambers, and the limitation that 2D CMOS-MEA chips only record from the surface of the brain slice. The techniques detailed in this protocol should enable users to consistently induce and record high-quality seizure-like activity from acute brain slices with a CMOS-HD-MEA system. In addition, this protocol outlines the proper treatment of CMOS-HD-MEA chips, the management of solutions and brain slices during experimentation, and equipment maintenance.

Introduction

Commercially available high-density microelectrode array (HD-MEA) systems, which include an MEA chip with thousands of recording points1,2 and an MEA platform to amplify and digitize the data, are an emerging tool for electrophysiological research. These HD-MEA systems use complementary metal-oxide-semiconductor (CMOS) technology to record electrophysiological data with high sensitivity from cell cultures and ex vivo brain slice preparations. These MEA systems afford unprecedented spatial and temporal resolution to neurophysiological research via high electrode density and quality signal-to-noise rati....

Protocol

Procedures involving mice were approved by the Institutional Animal Care and Use Committee (IACUC) at Brigham Young University. Male and female (n = 8) C57BL/6 mice aged to at least P21 were used in the following experiments.

figure-protocol-322
Figure 1: Schematic figure of CMOS-HD-MEA experimentation. (A) The brain sl.......

Representative Results

As is standard when visualizing activity from many channels1,4,5,10, we find it beneficial to first generate a raster plot of the data we acquire with the CMOS-HD-MEA (Figure 4A,C,E). This plot can create a bird's-eye view of the activity in all the recording channels in each brain slice by displaying each channel on the y-axis.......

Discussion

This protocol includes specific guidelines related to acute brain slice management that address common problems faced by CMOS-HD-MEA users, namely noise development under the brain slice and maintaining a healthy environment for the brain slice. Noise development under the slice occurs when the slice is not properly adhered to the array; if the brain slice is not adequately adhered, air pockets can form underneath the slice, which results in noise. This will result in the inability to acquire data. To mitigate these chal.......

Acknowledgements

The authors thank former and current Parrish lab members for their edits on this manuscript. We would also like to thank Alessandro Maccione of 3Brain for his feedback on this work. This work was funded by an AES/EF Junior Investigator Award and by Brigham Young University Colleges of Life Sciences and of Physical and Mathematical Sciences.

....

Materials

NameCompanyCatalog NumberComments
2D WorkbenchCloudrayLM04CLLD26B
4-AminopyridineSigma-Aldrich275875
Accura Chip3BrainAccura HD-MEACMOS-HD-MEA chip
AgaroseThermo Fisher ScientificBP160-100
Vibration isolation tableKinetic Systems91010124
Beaker for the slice holding chamber, 270 mLVWR10754-772
BioCam3BrainBioCAM DupleXCMOS-HD-MEA platform
Brainwave Software3BrainVersion 4CMOS-HD-MEA software
Calcium ChlorideThermo Fisher ScientificBP510-500
CarbogenAirgasX02OX95C2003102
CarbogenAirgas12005
Carbogen StonesSupelco59277
CompresstomePrecissionaryVF-300-0Z
ComputerDellPrecission3650
Crocodile Clip Grounding CablesJWQIDIB06WGZG17W
DetergentMetrex10-4100-0000
D-GlucoseMacron Fine Chemicals4912-12
Dihydrogen Sodium PhosphateThermo Fisher ScientificBP329-500
DinoCamDino-LiteAM73915MZTL
EthanolThermo Fisher ScientificA407P-4
ForcepsFine Science Tools11980-13
Hot plateThermo Fisher ScientificSP88857200
Ice MachineHoshizakiF801MWH
Inflow and outflow needlesJensen GlobalJG 18-3.0X
Inline Solution HeaterWarner InstrumentsSH-27B
IsofluorineDechra08PB-STE22002-0122
Kim WipesThermo Fisher Scientific06-666
Magnesium ChlorideThermo Fisher ScientificFLM33500
MicropipetsGilsonF144069
Mili-Q Water FilterMili-QZR0Q008WW
PaintbrushDaler RowneyAF85 Round: 0
Paper FilterWhatmanEW-06648-24
ParafilmAmerican National CanPM996
Perfusion SystemMulti Channel SystemPPS2
PipetorThermo Fisher ScientificFB14955202
Platinum Harp3Brain3Brain
Potassium ChlorideThermo Fisher ScientificP330-3
Razor bladePersonnaBP9020
ScaleMetter ToledoAB204
ScissorsSolingen92008
Slice Holding ChamberCustomCustomCustom 3D Printer Design, available upon request
Sodium BicarbonateMacron Fine Chemicals7412-06
Sodium ChlorideThermo Fisher ScientificS271-3
Temperature Control BoxWarner InstrumentsTC344B
Transfer PipettesGenesee Scientific30-200
TubingTygonB-44-3 TPE
Vibratome VZ-300PrecissionaryVF-00-VM-NC
Weigh BoatElectron Microscopy Sciences70040

References

  1. Obien, M. E. J., Frey, U. Large-scale, high-resolution microelectrode arrays for interrogation of neurons and networks. Adv Neurobiol. 22, 83-123 (2019).
  2. Schroter, M., et al. Functi....

Explore More Articles

Neuroscienceneuroscienceelectrophysiologysubmerged chamberex vivohippocampusneocortex4 aminopyridine0 magnesiumrodent brain sliceslocal field potentialictalHD MEA

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved