このプロトコルは、EGFR-インテグリンクロストークと細胞の機械的力に対するその影響を研究するために使用されるTGTセンサプラットフォームの単純さのために重要です。Raoは、細胞力学のEGF依存性調節を調査することを概説した。このプロトコルは、さまざまなリガンド、細胞型、刺激パラダイムに適応可能であり、さまざまな張力閾値のTGTと組み合わせることができます。
表面合成は、最初は威圧的に思えるかもしれません。鍵となるのは、試薬の調製と計算のチェックリストを採用して、複雑なステップを正確に実行するための準備と整理です。1 日目に、最大 8 つの 25 mm ガラス カバー スリップをポリテトラフルオロエチレンラックに入れます。
ラックを、40 ミリリットルの 200 プルーフエタノールを含む 50 ミリリットルのホウケイ酸ビーカーに入れます。室温で10〜15分間、35キロヘルツの動作周波数で超音波処理する。パイレックスビーカーに硫酸と過酸化水素を3:1の比率で混合し、ガラスピペットで攪拌したてのピラニア溶液40ミリリットルを50ミリリットルのビーカーに充填する。
カバースリップラックをビーカーに移し、ヒュームフード内で室温で30分間インキュベートしてカバースリップ表面をエッチングする。エッチング後、カバースリップラックをピンセットで超純水を入れたビーカーに移します。カバースリップを目視で検査し、ガラス表面に模様やほこりの粒子がなく、表面がきれいに見えることを確認します。
カバースリップラックを200プルーフエタノールでビーカーに移し、15秒間2回洗浄して表面を有機溶媒に平衡化させます。カバースリップラックを3%APTESを含む200プルーフエタノール溶液に室温で1時間移し、カバースリップをシラン化します。ラックを 200 プルーフのエタノール溶液の入った清潔なビーカーに浸します。
出口圧力の低い窒素ガスを使用してカバースリップを乾かします。カバースリップを10センチメートルのポリスチレン皿に入れ、その中にパラフィンフィルムを平らに置きます。パラフィンフィルム上に置かれた4つのカバースリップに、DMSO中の1ミリリットル当たり2ミリグラムの100マイクロリットルのNHSビオチン溶液を加える。
他の4つのカバースリップを上にしてサンドイッチをセットし、2つのカバースリップを互いに向かせ、その間に機能化ソリューションを置きます。2日目に、皿を摂氏4度から取り出し、サンドイッチしたカバースリップを分離します。サンドイッチを分離している間、機能化された表面を傷つけたり傷つけたりしないでください。
次に、カバー・スリップをラック内の、コーティング面が互いに対向するように向けます。窒素ガスで乾燥させます。カバースリップを新しい皿に入れ、その中にパラフィンフィルムを入れます。
各カバースリップに1X PBS中の0.1%ウシ血清アルブミン800マイクロリットルを加える。カバースリップを室温で30分間インキュベートして表面を不動態化し、その後の機能化試薬の非特異的結合を遮断する。カバースリップを機能化するために、室温で45〜60分間、1X PBS中のストレプトアビジン1ミリリットルあたり1マイクログラムの800マイクロリットルを加える。
TGTプローブをサーモサイクラーを使用してPCRチューブに組み立てます。インキュベーション後、カバースリップを1X PBSで3回洗浄する。4つのカバースリップに100マイクロリットルの組み立て済みTGTプローブを追加し、残りの4つのカバースリップを使用してサンドイッチを作り、機能化された側をプローブに向けます。
アルミホイルで覆います。インキュベーション後、サンドイッチを分離し、カバースリップを1X PBSで3回洗浄します。カバースリップを事前に清掃されたイメージングチャンバーに慎重に組み立てます。
Cos-7のメカニズム、接着、および細胞拡散に対する上皮成長因子刺激の影響を調べるために、Cos-7細胞を0.05%トリプシン-EDTAで2分間トリプシン化する。HBSSで洗浄し、800Gで5分間遠心分離することにより、トリプシンを中和する。DMEM中で組み立てられたTGT表面上の40,000細胞の密度のプレート細胞は、EGFまたはEGFを含まないDMEM当たり50ナノグラムのEGFを補充した。
インキュベーションに続いて、細胞を1X PBSで3回洗浄する。2ミリリットルの4%パラホルムアルデヒドで室温で12分間固定する。カバースリップを室温で5分間隔で1X PBSで5回洗浄します。
任意選択で、カバースリップを1X PBS中の50ミリモル塩化アンモニウムと共に摂氏37度で30分間インキュベートする。バッファーAを追加し、カバースリップ付きのイメージングチャンバーを湿度容器に入れます。摂氏37度で30分間インキュベートし、細胞をブロックして透過させます。
一次抗パキシリン抗体をブロッキングバッファー中で1:250希釈で希釈する。カバースリップあたり200マイクロリットルの一次抗体溶液とともに摂氏37度で2時間インキュベートします。カバースリップあたり200マイクロリットルのブロッキングバッファー中の1:800希釈でジコンジュゲートヤギ/抗ウサギ二次抗体の混合物と1:400希釈でジコンジュゲートファロイジンの混合物と同時に細胞を標識します。
5分間隔で1X PBSで表面を5回洗浄します。まず、対物レンズにオイルを加え、サンプルチャンバーのカバースリップ底部を清掃し、サンプルをステージに置きます。細胞に集中し、完璧な焦点を当てます。
落射照明絞りを閉じてセンタリングして、RICMを合わせます。488ナノメートルのレーザーを部屋の天井の小さなスポットに焦点を合わせ、臨界角を過ぎるまで入射角を大きくし、ライブモードでカメラの蛍光を監視します。臨界角を超えたときの背景蛍光と単一の焦点面の急激な減少を観察します。
RICMを使用してカメラのライブモードを使用してイメージングする細胞を同定する。488ナノメートル励起でのアクチン、561ナノメートル励起でのインテグリン張力、および647ナノメートル励起でのパキシリンのRICMおよびTIRF画像を取得します。200ミリ秒の露光時間を用いて画像を順次取得する。
カバースリップを変更し、焦点を合わせ、繰り返します。EGF刺激の有無にかかわらず、このTGT表面にCos-7細胞を播種し、リガンド刺激によるEGFR活性化がインテグリン力学に及ぼす影響を調べた。インテグリンがリガンドに結合し、プローブの張力閾値合計よりも大きい力を加えると、DNA二重鎖が分離し、蛍光が発生します。
機械的な力が破裂していないTGTプローブは、非蛍光性のままです。細胞をTGT表面上のEGFの有無にかかわらず60分間インキュベートし、固定し、免疫染色して、細胞骨格の焦点接着分布および組織を表示した。RICM画像において、56−ピコネウトンTGT表面上のCos−7細胞拡散は、刺激なしと比較してEGF刺激で有意に増強された。
EGFによる刺激は、より円形の形態をもたらし、Cos−7細胞の拡散および増殖を表す。オープンプローブからの蛍光は、張力蛍光画像で観察されるように、EGF刺激でも高い。オープンプローブの数に比例するオープンプローブの積分強度は、刺激なしよりもEGF刺激の方がはるかに高かった。
カバースリップの向きを常に覚えておき、機能化された表面を上向きに保ちます。サンドイッチを分離するときは、表面を傷つけたり傷つけたりしないように優しくしてください。表面合成に続いて、細胞接着または機械的形質導入を調節する細胞質タンパク質のプローブができる。
これにより、原形質膜における細胞力学のオーケストレーションに関与する下流のシグナル伝達分子の同定が可能になる。