Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Circadian clocks function within individual cells, i.e., they are cell-autonomous. Here, we describe methods for generating cell-autonomous clock models using non-invasive, luciferase-based real-time bioluminescence technology. Reporter cells provide tractable, functional model systems for studying circadian biology.
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed1,2). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere1,2. Individual cells are the functional units for generation and maintenance of circadian rhythms3,4, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous5-7. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects5,8. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms5,8-13.
Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals14,15, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection13,16,17 or stable transduction5,10,18,19. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells20. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.
1. Construction of Lentiviral Luciferase Reporters
A mammalian circadian reporter construct usually contains an expression cassette in which a circadian promoter is fused with the luciferase gene. Both ligation- and recombination-based strategies are commonly used for DNA cloning. As an example, here we describe a recombination-based Gateway cloning method for generating a P(Per2)-dLuc lentiviral reporter, in which the destabilized luciferase (dLuc) is under control of the mouse Per2 promoter.
2. Production of Lentiviral Particles
1. Seed 293T cells (day 1)
2. Transient transfection via CaPO4/DNA precipitation (day 2)
3. Harvest viral particles (days 3-4)
3. Infection of 3T3 Cells
1. Seed 3T3 cells (day 3)
Split and seed appropriate number (~12,000) of 3T3 cells on a 12-well plate to obtain 20-30% confluence by next day. Incubate at 37 °C overnight.
2. Infect 3T3 cells (day 4)
3. Select infected cells (day 5 and onward)
4. Bioluminescence Recording of Reporter Cells
1. Seed reporter cells
Propagate Blasticidin-resistant reporter cells and split onto 35-mm culture dishes. Incubate at 37 °C until confluent. We usually prepare ≥3 dishes for each reporter cell line under each condition for circadian phenotyping.
2. Synchronization and change to recording medium
3. Bioluminescence recording of reporter cells
5. Data Analysis and Presentation
Reporter cells facilitate high-resolution quantitative luminescence recording, critical for determining phenotypic effects on circadian clock function. To obtain circadian parameters including phase, period length, rhythm amplitude, and damping rate, we use the LumiCycle Analysis program (Actimetrics) to analyze bioluminescence data5,14. Briefly, raw data are baseline fitted first, and baseline-subtracted data are fitted to a sine wave, from which the parameters are determined. For samples that show persistent rhythms, goodness-of-fit of >90% is usually achieved. Due to high transient bioluminescence upon medium change, we usually exclude the first cycle of data from analysis.
For data presentation, we usually plot raw data (bioluminescence, counts/sec) against time (days). When necessary, baseline-subtracted data can be plotted to compare amplitude and phase.
6. Representative Results
1. Phase-specific circadian reporters
The circadian clock is based on a biochemical negative feedback mechanism1. The core feedback loop consists of transcriptional activators BMAL1 and CLOCK, and repressors PERs and CRYs, which act on the circadian E/E'-box enhancer elements to produce rhythmic gene expression (with morning phase, e.g., Rev-erbα). The core loop regulates and integrates at least two other circadian cis-elements, the DBP/E4BP4 binding element (D-box; for day phase, e.g., Per3) and the ROR/REV-ERB binding element (RRE; for night phase, e.g., Bmal1)17. Combinatorial regulation by multiple circadian elements can generate novel intermediate phases. For example, Cry1 transcription is mediated by all three circadian elements (i.e., E/E'-box and D-box elements in the promoter and RREs in the first intron of the Cry1 gene), giving rise to the distinct Cry1 evening-time phase13.
Based on these mechanisms of gene regulation, we generated four different reporter constructs: P(Per2)-dLuc and P(Cry1)-dLuc reporters containing both E/E'-box and D-box elements in the regulatory region17,26,27; P(Cry1)-Intron-dLuc representing combinatorial regulation by all three elements (i.e., E/E'-box, D-box, and RRE)13,17; and P(Bmal1)-dLuc regulated exclusively by RRE9,17,19,21. We introduced these reporters into 3T3 cells to produce the anticipated distinct phases of reporter expression (Figure 2).
2. Gene knockdown via RNAi and pharmacologically active compounds
When transfection efficiency is high, synthetic siRNA can be transiently transfected into cells to knock down gene expression. When transfection is technically difficult, an shRNA expression vector can be stably transduced into cells via lentiviral infection, so that shRNA produced by the cell is processed to siRNA for gene knockdown (KD). Here we present KD effects of Cry1 and Cry2 genes using siRNA in U2OS cells (Figure 3A) and shRNA in 3T3 cells using a pLL3.7 Gateway expression vector9 (Figure 3B). In addition to 3T3 cells, the U2OS model has become another preeminent cellular clock model largely because it meets the key requirements for high-throughput screening of commercially available human siRNA libraries (e.g., human origin, capable of generating robust circadian rhythms, validated function of all known clock genes, and amenable to highly efficient transfection and quantitative luminescence recording). In both cell types, RNAi-mediated KD resulted in clock phenotypes consistent with previous mouse knockout (KO) and cellular KD studies5,10,11,28. For example, Cry1 KD shortens period length and reduces rhythm persistence, whereas Cry2 KD lengthens period. In addition, selected small molecules can be used to pharmacologically target and perturb protein function (Figure 3C).
Figure 1. The lentivirus-mediated gene delivery system. (A) Schematic diagram of two lentiviral P(Per2)-dLuc reporter vectors and a CMV-EGFP construct. Only the region for integration into the host cell genome is shown. In both reporter constructs, the transcription of dLuc is under direct control of the Per2 promoter. In the pLV7-Bsd-P(Per2)-dLuc vector (recombination-based cloning), a coexpressed Blasticidin resistance gene (Bsd) facilitates selection of infected cells. In the pLV156-P(Per2)-dLuc vector (ligation-based cloning), EGFP translation is mediated by an internal ribosome entry site (IRES) downstream of dLuc, allowing for visual observation and FACS sorting of infected cells. In addition, an SV40 promoter/terminator (P/T) is used as an insulator (see discussion 1.3). In the CMV-EGFP control vector, EGFP expression is under control of a strong CMV promoter. (B) Fluorescent images of transfected and infected GFP-expressing cells. Typically, we achieve high efficiency both in transient transfection of 293T cells and in lentiviral infection of cell lines of our interest, as indicated by GFP expression in these cells. Click here to view larger figure.
Figure 2. Phase-specific expression of bioluminescence reporters in 3T3 cells. The lentiviral reporter vectors used in this experiment are pLV7-Bsd-P(Per2)-dLuc, P(Cry1)-dLuc, P(Cry1)-Intron-dLuc, and P(Bmal1)-dLuc. Each reporter exhibits a distinct phase of oscillation, as indicated by the arrows. While the Per2 and Cry1 promoters drive peak bioluminescence at morning-day phases and the Bmal1 promoter at night phase, combinatorial regulation by the P(Cry1)-Intron harboring E-box, D-box, and RRE elements confers evening phase of peak bioluminescence. Click here to view larger figure.
Figure 3. Genetic and pharmacological perturbation of circadian bioluminescence rhythms in reporter cells. (A) Effects of Cry1 and Cry2 knockdown by siRNAs on cellular rhythms of U2OS reporter cells. The LumiCycle luminometer was used for bioluminescence recording of cells in 35 mm dishes. Figure is adapted from Reference #10, with permission from Elsevier (2009). (B) Effects of Cry2 knockdown by shRNAs on cellular rhythms of 3T3 reporter cells. A pLL3.7 Gateway vector containing a U6-shRNA cassette was used for Cry2 gene knockdown. shRNA2 has a better knockdown efficiency than shRNA1 as determined by Western blot analysis (data not shown). A Synergy luminometer was used for bioluminescence recording of cells in a 96-well plate. The settings for recording are as follows: incubator temperature, 33 °C; integration time, 15 sec; interval time, 30 min. (C) Effects of small molecule inhibitors on cellular rhythms of U2OS reporter cells. Chir99021 and Roscovitine are inhibitors directed against GSK-3 and CDK, respectively. The ViewLux system (Chir99021 assay) and a Tecan luminometer (Roscovitine assay) were used for bioluminescence recordings of cells in 384-well plates. Figure is adapted from Reference #19 (Copyright 2008 National Academy of Sciences, U.S.A.). Click here to view larger figure.
1. Modifications to Current Protocol
1.1 Recording devices and throughput considerations
Because of its commercial availability, the LumiCycle (Actimetrics) has become the most commonly used automated luminometer device for real-time recording4,5,9,19,29-31. The LumiCycle employs photomultiplier tubes (PMTs) as light detectors, which provide extremely high sensitivity and low noise14, and therefore is particularly suitable for data acquisition of ex...
No conflicts of interest declared.
This work was supported in part by the National Science Foundation (IOS-0920417) (ACL).
Name | Company | Catalog Number | Comments |
DMEM | HyClone | SH30243FS | For regular cell growth |
DMEM | Invitrogen | 12100-046 | For luminometry |
FBS | HyClone | SH3091003 | |
Pen/Strep/Gln(100x) | HyClone | SV3008201 | |
B-27 | Invitrogen | 17504-044 | |
D-Luciferin | Biosynth | L-8220 | |
Poly-L-lysine | Sigma | P4707 | |
Polybrene | Millipore | TR-1003-G | |
Forskolin | Sigma | F6886 | |
All other chemicals | Sigma | ||
Equipment | |||
Tissue culture incubator | 5% CO2 at 37 °C | ||
Tissue culture hood | BSL-2 certified | ||
Light & fluorescent microscope | Phase contrast optional | ||
LumiCycle | Actimetrics |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone