Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here we describe a reliable method to measure mitochondrial mass and membrane potential in ex vivo cultured hematopoietic stem cells and T cells.
A fine balance of quiescence, self-renewal, and differentiation is key to preserve the hematopoietic stem cell (HSC) pool and maintain lifelong production of all mature blood cells. In recent years cellular metabolism has emerged as a crucial regulator of HSC function and fate. We have previously demonstrated that modulation of mitochondrial metabolism influences HSC fate. Specifically, by chemically uncoupling the electron transport chain we were able to maintain HSC function in culture conditions that normally induce rapid differentiation. However, limiting HSC numbers often precludes the use of standard assays to measure HSC metabolism and therefore predict their function. Here, we report a simple flow cytometry assay that allows reliable measurement of mitochondrial membrane potential and mitochondrial mass in scarce cells such as HSCs. We discuss the isolation of HSCs from mouse bone marrow and measurement of mitochondrial mass and membrane potential post ex vivo culture. As an example, we show the modulation of these parameters in HSCs via treatment with a metabolic modulator. Moreover, we extend the application of this methodology on human peripheral blood-derived T cells and human tumor infiltrating lymphocytes (TILs), showing dramatic differences in their mitochondrial profiles, possibly reflecting different T cell functionality. We believe this assay can be employed in screenings to identify modulators of mitochondrial metabolism in various cell types in different contexts.
Hematopoietic stem cells (HSCs) are a small population of cells residing in the bone marrow ensuring blood production and homeostasis throughout an organism's lifetime. HSCs mediate this process by giving rise to progenitors that in turn produce terminally differentiated mature blood cell lineages via several rounds of cell division and well-orchestrated differentiation steps1. Importantly, HSCs produce their energy via anaerobic glycolysis. In contrast, more committed and active hematopoietic progenitors switch their metabolism toward mitochondrial metabolism2,3,4. This distinct metabolic state is believed to protect the HSCs from cellular damage inflicted by reactive oxygen species (ROS) produced by active mitochondria, thereby maintaining their long-term in vivo function5,6,7,8. Direct measurement of the HSC metabolic state is challenging and often low throughput due to their limited numbers. Here, we describe a flow cytometry-based assay for robust measurement of mitochondrial membrane potential (ΔΨm) using tetramethylrhodamine methyl ester (TMRM) fluorescence, and mitochondrial mass using a green fluorescent mitochondrial stain (Mitotracker Green) in HSCs. We have previously demonstrated that low ΔΨm is a bona-fide functional marker of highly purified HSCs9 and metabolic modulators capable of lowering ΔΨm enhance HSCs function9,10. Here we propose use of our method on HSCs mitochondrial profiling as strategy to identify novel molecules capable of improving the HSCs' long-term blood reconstitution potential.
As an example, we demonstrate that this assay reliably measures the lowering of HSC ΔΨm upon exposure to vitamin B3 analog nicotinamide riboside (NR). Accordingly, in our recently published study we demonstrate that NR strongly ameliorates blood recovery posttransplant in both mouse and humanized mouse systems by directly improving hematopoietic stem and progenitor functions10. The capacity of such metabolic modulators is of great clinical value considering that a 25% death rate is linked to delay in blood and immune recovery in posttransplanted patients11,12.
Moreover, we provide evidence that this methodology can be applied for the characterization of the metabolic profile and function of human T cells. In recent years, the development of adoptive cell therapy (ACT) using autologous tumor infiltrating lymphocytes (TILs) has become the most effective approach for certain types of advanced cancer with extremely unfavorable prognosis (e.g., metastatic melanoma, where >50% of patients respond to treatment and up to 24% of patients have complete regression)13. However, TILs harboring sufficient antitumor activity are difficult to generate14. The extensive proliferation and stimulation that TILs undergo during ex vivo expansion cause T cell exhaustion and senescence that dramatically impair T cell antitumor response15. Importantly, the TILs' antitumoral capacity is tightly linked to their metabolism16,17 and approaches aimed to modulate metabolism through the inhibition of the PI3K/Akt pathway have produced encouraging results18,19. For this reason, we compare the ΔΨm of T cells derived from peripheral blood mononuclear cells (PBMCs) and patient-derived TILs, and show that less differentiated PBMC-derived T cells have lower ΔΨm and mitochondrial mass as compared to terminally differentiated TILs.
We envision that this assay can be used to identify novel metabolic modulators that improve HSC and T cell function via the modulation of ΔΨm.
All experiments described in the manuscript follow the guidelines of our institution and were carried out in accordance with Swiss law for animal experimentation (Authorization: VD3194) and for research involving human samples (Protocol: 235/14; CER-VD 2017-00490)
1. Hematopoietic Stem Cell Extraction
2. Ex Vivo Culture of Hematopoietic Stem Cells
3. Measurement of Mitochondrial Mass and Membrane Potential
In Figure 1 we show the gating strategy for the isolation of hematopoietic stem cells from the mouse bone marrow and the layout of the plate for their ex vivo culture. Figure 1A shows the identification of the lymphocyte fraction in the SSC-A/FSC-A plot. Doublets were removed in the singlet gate followed by identification of live cells by the absence of DAPI signal. The LKS population, defined by lineage- Sca1+cKit+, was id...
A tight regulation of HSC function is important to maintain stable hematopoiesis during an organism's lifetime. Like various other cell types in the body, a key component that contributes to the regulation of HSC function is cellular metabolism. Previous studies from our lab9 and others2,3 have implicated the importance of mitochondria in maintaining a distinct metabolic state in HSCs. Due to the extremely low number of HSCs isolated f...
Some elements of this work have been submitted as application P1828EP00 to the European Patent Office.
We thank the UNIL Flow Cytometry Core Facility for their support especially Dr. Romain Bedel. This work was supported by the Kristian Gerhard Jebsen foundation grant to N.V and O.N.
Name | Company | Catalog Number | Comments |
5 mL FACS tubes | Falcon | 352235 | Sample preparation |
96-U bottom plate | Corning | 3799 | Cell culture |
AutoMACS pro separator | Miltenyi Biotec | Automatic Cell separation | |
BD FACS AriaIII | Becton and Dickinson | Cell sorting | |
BD IMag mouse hematopoietic progenitor cell enrichment kit | BD | 558451 | Lineage depletion |
BD LSRII | Becton and Dickinson | FACS acquisition machine | |
BD-DIVA | Becton and Dickinson | Acquisition software | |
CD150 PE | Biolegend | 115904 | Antibody staining mix |
CD150 PE-Cy5 | Biolegend | 115912 | Antibody staining mix |
CD48 PB | Biolegend | 103418 | Antibody staining mix |
Centrifuge- 5810R | Eppendorf | Centrifugation | |
Ckit PeCy7 | Biolegend | 105814 | Antibody staining mix |
Flow jo | FlowJo LLC | FACS Analysis software | |
GraphPad-Prism | GraphPad | Plotting data into graphs | |
Mitotracker Green | Invitrogen | M7514 | Green-fluorescent mitocondrial stain to measure mitochondrial mass; working concentration = 100 nM; stock concentration = 1 mM |
Nicotinamide Riboside (NR) | Custom synthesized in house | Metabolic modulator; working concentration = 500 µM; stock concentration = 50 mM | |
PBS | CHUV | 1000324 | Buffer preparation; working concentration = 1x; stock concentration = 1x |
Pen-Strep (P/S) | Life technologies | 15140122 | Ex vivo culture; working concentration = 1x; stock concentration = 1x |
RBC Lysis buffer | Biolegend | 420301 | Lysing Red blood cells; working concentration = 1x; stock concentration = 10x |
Recombinant Mouse Flt-3 Ligand (FLT3) | RnD | 427-FL-005/CF | Ex vivo culture; working concentration = 2 ng/mL; stock concentration = 10 µg/mL |
Recombinant mouse stem cell factor (SCF) | RnD | 455-MC-010/CF | Ex vivo culture; working concentration = 100 ng/mL; stock concentration = 50 µg/mL |
Sca1 APC | Thermo Fisher Scientific | 17-5981-82 | Antibody staining mix |
StemlineII Hematopoietic Stem Cell Expansion Medium | SIGMA | S0192 | Ex vivo culture |
Streptavidin Pac orange | Life Technologies | S32365 | Antibody staining mix |
Streptavidin Tx red | Life Technologies | S872 | Antibody staining mix |
TMRM | Invitrogen | T668 | Staining mitochondrial membrane potential; working concentration = 200 nM; stock concentration = 10 mM |
Ultra pure EDTA | Invitrogen | 15575-038 | Buffer preparation; working concentration = 0.5 M; stock concentration = 1 mM |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone