Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Extracellular depletion of fluorescently labeled glucose correlates with glucose uptake and could be used for high-throughput screening of glucose uptake in excised organs and cell cultures.
The ongoing worldwide epidemic of diabetes increases the demand for the identification of environmental, nutritional, endocrine, genetic, and epigenetic factors affecting glucose uptake. The measurement of intracellular fluorescence is a widely used method to test the uptake of fluorescently-labeled glucose (FD-glucose) in cells in vitro, or for imaging glucose-consuming tissues in vivo. This assay assesses glucose uptake at a chosen time point. The intracellular analysis assumes that the metabolism of FD-glucose is slower than that of endogenous glucose, which participates in catabolic and anabolic reactions and signaling. However, dynamic glucose metabolism also alters uptake mechanisms, which would require kinetic measurements of glucose uptake in response to different factors. This article describes a method for measuring extracellular FD-glucose depletion and validates its correlation with intracellular FD-glucose uptake in cells and tissues ex vivo. Extracellular glucose depletion may be potentially applicable for high-throughput kinetic and dose-dependent studies, as well as identifying compounds with glycemic activity and their tissue-specific effects.
The demand for measuring glucose uptake rises together with the critical need to address an epidemic increase in a multitude of diseases dependent on glucose metabolism. Underlying mechanisms of degenerative metabolic diseases, neurological and cognitive disorders1, inflammatory2 and infectious diseases3, cancer4,5, as well as aging6, depend on glucose metabolism for energy and its storage, anabolic processes, protein, and gene modification, signaling, regulation of genes, and nucleic acids synthesis and replication7,8,9. Diabetes mellitus (DM) is directly related to malfunction of glucose uptake regulation. DM is a spectrum of chronic diseases such as type-1, -2, and -3 diabetes mellitus, gestational diabetes, maturity-onset diabetes of the young, and other types of this disease induced by environmental and/or genetic factors. In 2016, the first WHO Global report on diabetes demonstrated that the number of adults living with the most widespread DM has almost quadrupled since 1980 to 422 million adults10, and this number of DM patients has been rising exponentially for the last few decades. In 2019 alone, an estimate of 1.5 million deaths was directly caused by DM10. This dramatic upsurge is due to the rise in type-2 DM and the conditions driving it, including overweight and obesity10. The COVID-19 pandemic revealed a two-fold increase in mortality in patients with DM compared to the general population, suggesting the profound yet poorly understood role of glucose metabolism in the immune defense3. Prevention, early diagnosis, and treatment of DM, obesity, and other diseases require optimization of measurements of glucose uptake by different tissues, and identification of environmental11, nutritional12, endocrine13, genetic14, and epigenetic15 factors affecting glucose uptake.
In research, intracellular and/or tissue uptake of glucose is commonly measured by fluorescently-labeled glucose (FD-glucose) in vitro16,17,18 and in vivo19. FD-glucose became a preferred method compared to more precise methods using radioactively-labeled glucose20, analytical mass spectroscopy analysis21, metabolomics22, nuclear magnetic resonance methods23, and positron emission tomography/computed tomography (PET/CT)5,24. Unlike FD-glucose uptake, analytical methods requiring more biological material may involve a multi-step sample preparation, expensive instruments, and complex data analysis. Effective and inexpensive measurements of FD-glucose uptake in cell cultures have been utilized in proof-of-concept experiments and may require validation by other methods.
The basis of FD-glucose application for glucose uptake studies is the reduced metabolism of FD-glucose compared to endogenous glucose25. Nonetheless, both endogenous glucose and FD-glucose are dynamically distributed among all cellular compartments for use in anabolic, catabolic, and signaling processes. The compartmentalization and time-dependent processing25 of FD-glucose interfere with the fluorescence measurements, and represent the major limiting factors for the use of this assay in high-throughput screening experiments, kinetic analysis, 3D cell culture, co-cultures, and tissue explant experiments. Here, we provide data demonstrating a high correlation between the extracellular depletion of FD-glucose and its intracellular uptake, suggesting the extracellular depletion of FD-glucose as a surrogate measurement for intracellular glucose uptake. The measurement of extracellular depletion of glucose was applied to validate tissue-specific differences in glucose uptake in mice treated with insulin and an experimental drug18 to provide a proof-of-principle of this method.
The current protocol describes intracellular and extracellular (Figure 1) measurements of FD-glucose uptake in 3T3-L1 cells. Protocol sections 1-7 explain the culture and growth of cells for 48 h; cell starvation, stimulation, and baseline extracellular measurements; and post-stimulation measurements of extracellular FD-glucose and intracellular measurements of FD-glucose and protein. Protocol section 8 describes the ex vivo measurement of extracellular uptake of FD-glucose in tissues dissected from ob/ob mice in the presence and absence of insulin and amino acid compound 2 (AAC2) described elsewhere18.
Animal studies were approved by the Institutional Animal Care and Use Committee of The Ohio State University (OSU, protocol 2007A0262-R4).
NOTE: All procedures must be done in a class II biosafety cabinet with the blower on and the lights off.
1. Preparation of materials
NOTE: All materials are listed in the Table of Materials.
2. 3T3-L1 cell culture and maintenance
3. Starvation of 3T3-L1 cells
4. Preparation of FD-glucose solutions with different concentrations
NOTE: The experiment in Figure 2 examines extracellular and intercellular media with and without stimulation with insulin.
5. Treating starved 3T3-L1 cells
6. Extracellular and intercellular measurements for stimulated 3T3-L1 cells
7. Protein-based normalization of intracellular glucose uptake
NOTE: Intracellular FD-glucose uptake depends on the cell number. Protein levels in cellular lysates are proportional to the cell numbers that allow normalizing intracellular FD-glucose levels to the number of cells in each well.
8. Ex vivo measurement of extracellular FD glucose depletion in organs
Intracellular intake and extracellular glucose depletion were measured in 3T3-L1 preadipocytes, in response to different concentrations of FD-glucose (Figure 2) with and without insulin stimulation. Figure 2A demonstrates a dose-dependent increase in the intracellular uptake of FD-glucose, which was significantly increased in the presence of insulin. The concomitant decrease in extracellular FD-glucose in the same cells is shown in
The direct comparison of extracellular FD-glucose depletion with normalized intracellular glucose uptake in cells culture showed a high correlation, suggesting that extracellular glucose depletion could be a surrogate measurement for glucose uptake assessment. The measurement of extracellular FD-glucose can use a broad range of FD glucose concentrations, also 0.5-2.5 μg FD-glucose/mL appear to provide the optimal range. Extracellular FD-glucose does not require normalization to cell number or protein concentrations ...
Authors have no issues to disclose and have no conflict of interests.
The project was supported by Ralph and Marian Falk Medical Research Catalyst Award and Kathleen Kelly Award. Other supports included the National Center for Research Resources UL1RR025755 and NCI P30CA16058 (OSUCCC), the NIH Roadmap for Medical Research. The content is solely the responsibility of the authors and does not represent the official views of the National Center for Research Resources or the NIH.
Name | Company | Catalog Number | Comments |
3T3-L1 mouse fibroblasts | ATCC | CL-173 | Cell line |
96-well plates | Falcon | 353227 | Plastic ware |
B6.V-Lepob/J male mice | Jackson Laboratory | stock number 000632 | Mice |
BioTek Synergy H1 modular multimode microplate reader (Fisher Scientific, US) | Fisher Scientific, US | B-SHT | Device |
Bovine serum | Gibco/ThermoFisher | 161790-060 | Cell culture |
Calf serum | Gibco/ThermoFisher | 26010-066 | Cell culture |
Cell incubator | Forma | Series II Water Jacket | Device |
Diet (mouse/rat diet, irradiated) | Envigo | Teklad LM-485 | Diet |
Dimethylsulfoxide (DMSO) | Sigma LifeScience | D2650-100mL | Reagent |
Dulbecco's Modified Eagle Medium | Gibco/ThermoFisher | 11965-092 | Cell culture |
Ethanol | Sigma Aldrich | E7023-500mL | Reagent |
Fluorescent 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose) | Sigma | 72987-1MG | Assay |
Glucose-free and phenol red-free DMEM | Gibco/ThermoFisher | A14430-01 | Cell culture |
Human insulin 10 mg/mL | MilliporeSigma, Cat N 91077C | Cat N 91077C | Reagent |
Isoflurane, 5% | Henry Schein | NDC 11695-6776-2 | Anestaetic |
Penicillin/streptomycin (P/S) | Gibco/ThermoFisher | 15140-122 | Cell culture |
Phosphate buffered solution | Sigma-Aldrich | DA537-500 mL | Cell culture |
Pierce bicinchoninic acid (BCA) protein assay | ThermoFisher | Cat N23225 | Assay |
Radioimmunoprecipitation assay lysis buffer | Santa Cruz Biotechnology | sc-24948 | Assay |
Trypsin-EDTA (0.05%) | Gibco/ThermoFisher | 25300-054 | Cell culture |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone