A subscription to JoVE is required to view this content. Sign in or start your free trial.
Extracellular depletion of fluorescently labeled glucose correlates with glucose uptake and could be used for high-throughput screening of glucose uptake in excised organs and cell cultures.
The ongoing worldwide epidemic of diabetes increases the demand for the identification of environmental, nutritional, endocrine, genetic, and epigenetic factors affecting glucose uptake. The measurement of intracellular fluorescence is a widely used method to test the uptake of fluorescently-labeled glucose (FD-glucose) in cells in vitro, or for imaging glucose-consuming tissues in vivo. This assay assesses glucose uptake at a chosen time point. The intracellular analysis assumes that the metabolism of FD-glucose is slower than that of endogenous glucose, which participates in catabolic and anabolic reactions and signaling. However, dynamic glucose metabolism also alters uptake mechanisms, which would require kinetic measurements of glucose uptake in response to different factors. This article describes a method for measuring extracellular FD-glucose depletion and validates its correlation with intracellular FD-glucose uptake in cells and tissues ex vivo. Extracellular glucose depletion may be potentially applicable for high-throughput kinetic and dose-dependent studies, as well as identifying compounds with glycemic activity and their tissue-specific effects.
The demand for measuring glucose uptake rises together with the critical need to address an epidemic increase in a multitude of diseases dependent on glucose metabolism. Underlying mechanisms of degenerative metabolic diseases, neurological and cognitive disorders1, inflammatory2 and infectious diseases3, cancer4,5, as well as aging6, depend on glucose metabolism for energy and its storage, anabolic processes, protein, and gene modification, signaling, regulation of genes, and nucleic acids synthesis and replication....
Animal studies were approved by the Institutional Animal Care and Use Committee of The Ohio State University (OSU, protocol 2007A0262-R4).
NOTE: All procedures must be done in a class II biosafety cabinet with the blower on and the lights off.
1. Preparation of materials
NOTE: All materials are listed in the Table of Materials.
Intracellular intake and extracellular glucose depletion were measured in 3T3-L1 preadipocytes, in response to different concentrations of FD-glucose (Figure 2) with and without insulin stimulation. Figure 2A demonstrates a dose-dependent increase in the intracellular uptake of FD-glucose, which was significantly increased in the presence of insulin. The concomitant decrease in extracellular FD-glucose in the same cells is shown in
The direct comparison of extracellular FD-glucose depletion with normalized intracellular glucose uptake in cells culture showed a high correlation, suggesting that extracellular glucose depletion could be a surrogate measurement for glucose uptake assessment. The measurement of extracellular FD-glucose can use a broad range of FD glucose concentrations, also 0.5-2.5 μg FD-glucose/mL appear to provide the optimal range. Extracellular FD-glucose does not require normalization to cell number or protein concentrations .......
Authors have no issues to disclose and have no conflict of interests.
The project was supported by Ralph and Marian Falk Medical Research Catalyst Award and Kathleen Kelly Award. Other supports included the National Center for Research Resources UL1RR025755 and NCI P30CA16058 (OSUCCC), the NIH Roadmap for Medical Research. The content is solely the responsibility of the authors and does not represent the official views of the National Center for Research Resources or the NIH.
....Name | Company | Catalog Number | Comments |
3T3-L1 mouse fibroblasts | ATCC | CL-173 | Cell line |
96-well plates | Falcon | 353227 | Plastic ware |
B6.V-Lepob/J male mice | Jackson Laboratory | stock number 000632 | Mice |
BioTek Synergy H1 modular multimode microplate reader (Fisher Scientific, US) | Fisher Scientific, US | B-SHT | Device |
Bovine serum | Gibco/ThermoFisher | 161790-060 | Cell culture |
Calf serum | Gibco/ThermoFisher | 26010-066 | Cell culture |
Cell incubator | Forma | Series II Water Jacket | Device |
Diet (mouse/rat diet, irradiated) | Envigo | Teklad LM-485 | Diet |
Dimethylsulfoxide (DMSO) | Sigma LifeScience | D2650-100mL | Reagent |
Dulbecco's Modified Eagle Medium | Gibco/ThermoFisher | 11965-092 | Cell culture |
Ethanol | Sigma Aldrich | E7023-500mL | Reagent |
Fluorescent 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose) | Sigma | 72987-1MG | Assay |
Glucose-free and phenol red-free DMEM | Gibco/ThermoFisher | A14430-01 | Cell culture |
Human insulin 10 mg/mL | MilliporeSigma, Cat N 91077C | Cat N 91077C | Reagent |
Isoflurane, 5% | Henry Schein | NDC 11695-6776-2 | Anestaetic |
Penicillin/streptomycin (P/S) | Gibco/ThermoFisher | 15140-122 | Cell culture |
Phosphate buffered solution | Sigma-Aldrich | DA537-500 mL | Cell culture |
Pierce bicinchoninic acid (BCA) protein assay | ThermoFisher | Cat N23225 | Assay |
Radioimmunoprecipitation assay lysis buffer | Santa Cruz Biotechnology | sc-24948 | Assay |
Trypsin-EDTA (0.05%) | Gibco/ThermoFisher | 25300-054 | Cell culture |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved