É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Demonstramos a síntese de nanopartículas de silício poroso fusogenic para entrega efectiva do oligonucleotide in vitro e in vivo. Nanopartículas de silício poroso são carregadas com siRNA para formar o núcleo, que é revestido por fusogenic lipídios através da extrusão para formar o reservatório. Direcionamento functionalization moiety e caracterização de partículas estão incluídos.
Com o advento da terapia gênica, tornou-se o desenvolvimento de um sistema de entrega eficaz em vivo do nucleotide-carga de importação paralela. Nanopartículas de silício poroso de Fusogenic (F-pSiNPs) recentemente demonstraram alto vivo em eficácia devido a sua alta do oligonucleotide carregar a capacidade e a via de absorção celular exclusivo que evita a endocitose de silenciamento do gene. A síntese de F-pSiNPs é um processo de várias etapa que inclui: (1) carregamento e selagem de payloads do oligonucleotide nos poros do silicone; (2) revestimento simultâneo e dimensionamento de lipídios fusogenic em torno dos núcleos de silício poroso; e (3) conjugação de direcionamento de peptídeos e de lavagem para remover o excesso do oligonucleotide, detritos de silício e peptídeo. Uniformidade de tamanho da partícula é caracterizada pela difusão dinâmica da luz, e sua estrutura casca-núcleo pode ser verificada por microscopia eletrônica de transmissão. A absorção de fusogenic é validada por carregar um lipofílico tingir, 1, 1'-dioctadecyl-3,3, 3', 3'-tetramethylindocarbocyanine perclorato (DiI), para a fusogenic lipídica e tratá-la às pilhas in vitro para observar para coloração contra a membrana plasmática endocítica localizações. As direcionamento e in vivo eficácias silenciar do gene anteriormente foram quantificadas em um modelo do rato de pneumonia de Staphylococcus aureus , em que o peptídeo alvo é esperado para ajudar o F-pSiNPs a casa para o local da infecção. Além da sua aplicação na infecção por S. aureus , o sistema F-pSiNP pode ser usado para entregar qualquer do oligonucleotide para a terapia de gene de uma vasta gama de doenças, incluindo doenças auto-imunes, câncer e infecções virais.
Terapia genética modula a expressão de genes específicos para obter um resultado terapêutico. Inúmeras ferramentas para modulação de genes foram descobertas e estudadas, incluindo ácido ribonucleico interferência (RNAi) usando oligonucleotídeos (por exemplo, curto interferência do RNA (siRNA)1,2, microRNA (miRNA)3,4 ), DNA plasmídeo5,6, nucleases (por exemplo, dedo de zinco, TALENS)7,8e CRISPR/Cas9 sistemas9,10. Enquanto mecanismo de cada ferramenta de ação é diferente, todas as ferramentas devem alcançar o citoplasma da célula ou o núcleo para ser ativo. Como tal, embora estas ferramentas têm comprovado para induzir um efeito significativo na modulação de expressão gênica in vitro, a eficácia in vivo sofre entraves extracelulares e intracelulares. Devido ao fato de que as ferramentas são de origem biológica, muitas enzimas e sistemas de limpeza existem em nosso corpo que têm a capacidade de degradar ou remover as moléculas estrangeiras11. Mesmo no caso que as ferramentas atingem a célula-alvo, eles sofrem de endocitose; um modo de captação celular que encapsula e prende as ferramentas em vesículas ácidas do estômago-como que degradam ou expulsar as ferramentas fora da célula. De fato, estudos têm mostrado que nanopartículas de lipídios são endocytosed através de macropinocitose, da qual cerca de 70% do siRNA são exocytosed das células dentro de 24h de captação12,13. A maior parte do restante siRNA é degradada através da via lisossomal, e em última análise, apenas 1-2% de siRNA que inicialmente entra na célula com as nanopartículas alcançar CDDP fuga potencialmente submeter-se a RNAi13,14 .
Recentemente desenvolvemos a nanopartículas de silício poroso de fusogenic (F-pSiNPs) que têm um núcleo de siRNA-carregado composto de nanopartículas de silício poroso e um fusogenic lipídica shell15. Os F-pSiNPs apresenta três grandes vantagens sobre outros sistemas de entrega convencional do oligonucleotide: (1) um lipídio fusogenic revestimento que permite que as partículas de ignorar a endocitose e entregar a carga inteira diretamente no citoplasma celular (contra o 1-2% alcançado por partículas de endocytosed13,14) (Figura 1); (2) alto carregamento em massa de siRNA no pSiNPs (> 20% em peso em comparação com 1-15% em peso por sistemas convencionais)15, que rapidamente degradar no citoplasma (uma vez que as partículas do núcleo derramou o revestimento lipídico através de captação de fusogenic) para liberar o siRNA; e (3) visando a conjugação de peptídeo para orientação seletiva para desejado tipos de células in vivo.
O sistema F-pSiNP demonstrou silenciamento eficácia significativa do gene (> 95% in-vitro; > 80% in vivo) e o subsequente efeito terapêutico em um modelo de mouse fatal de S. aureus pneumonia; os resultados dos quais foram anteriormente publicados15. No entanto, a estrutura complexa do sistema F-pSiNP requer manipulação delicada e otimização de aperfeiçoá-lo para gerar nanopartículas uniformes e estáveis. Assim, o objetivo deste trabalho é apresentar um protocolo completo, bem como estratégias de otimização para a síntese, functionalization e caracterização de F-pSiNPs para ser usado no alvo entrega de siRNAs para efeito silencioso potente gene.
1. síntese de nanopartículas de silício poroso (pSINPs)
Cuidado: Sempre tenha cuidado ao trabalhar com ácido fluorídrico (HF). Siga todas as guias de segurança, de acordo com sua ficha de dados de segurança (SDS), lidar com quaisquer produtos químicos que contenham HF em uma coifa e usar equipamento de protecção adequado (EPI; luvas duplas com luvas de butilo do lado de fora, butil avental com jaleco e por baixo, rosto proteger com óculos de segurança por baixo). Todas as universidades e laboratórios de p & D requerem treinamento específico sobre segurança de HF antes do uso. Não tente trabalhar com HF sem aprovação prévia do seu coordenador de segurança do laboratório local, pois são necessárias medidas de segurança adicionais não descritas aqui.
2. preparação do filme de lipídios fusogenic
3. carregamento e selagem de siRNA em pSiNPs
4. revestimento siRNA-carregado pSiNPs com lipídios fusogenic
5. conjugação de alvejar peptides
Uma síntese bem sucedida de fusogenic pSiNPs deve produzir uma solução homogênea, ligeiramente opaca (Figura 3a). Falha para otimizar a relação e a concentração de pSiNPs: siRNA: CaCl2 pode levar a agregação durante o carregamento (Figura 3b). Como as partículas são extrudadas através de membranas de 200 nm, o diâmetro médio hidrodinâmico da pSiNPs de fusogenic medidos por DLS deve ser aproximadamente 2...
Síntese de nanopartículas de silício poroso é mostrado na Figura 5. O passo fundamental na síntese de fusogenic pSiNPs está na etapa de carregamento (etapa 3). Se as nanopartículas fusogenic são agregar pós-síntese (Figura 3), o motivo pode ser devido ao seguinte: (1) estoque de cloreto de cálcio não foi homogênea preparado, assim passo 3.1.2 deve ser cuidadosamente seguido ou refinado; ou (2) a relação de pSiNP: siRNA: CaCl2 ou a conce...
MJS é um fundador científico da Spinnaker Biosciences, Inc. e tem uma participação na empresa. Embora este subsídio foi identificado para a gestão de conflito de interesses dependendo do escopo geral do projeto e seu benefício potencial de Spinnaker Biosciences, Inc., os findings da pesquisa incluídos nesta publicação particular podem não necessariamente se relacionam com os interesses da Spinnaker Biosciences, Inc. Os termos desse acordo foram revistos e aprovados pela Universidade da Califórnia, San Diego, em conformidade com suas políticas de conflito de interesses. Outros autores não têm nada para divulgar.
Este trabalho é apoiado pelo National Institutes of Health, através de contrato # R01 AI132413-01.
Name | Company | Catalog Number | Comments |
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) | Avanti Polar Lipids | 850345P | Powder |
1,2-dioleoyl-3-trimethylammonium-propane (chloride salt) (DOTAP) | Avanti Polar Lipids | 890890P | Powder |
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (ammonium salt) (DSPE-PEG(2000) Maleimide) | Avanti Polar Lipids | 880126P | Powder |
Aluminum foil | VWR International, LLC | 12175-001 | |
Calcium chloride (CaCl2) | Spectrum | C1977 | Anhydrous, Pellets |
Chloroform | Fisher Scientific | C6061 | |
Computer | Dell | Dimension 9200 | Any computer with PCI card slot is acceptable |
Dil Stain (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate ('DiI'; DiIC18(3))) | Life Technologies | D3911 | |
Ethanol (EtOH) | UCSD Store | 111 | 200 Proof |
Hydrofluric acid (HF) | VWR International, LLC | MK264008 | Purity: 48% |
Keithley 2651a Sourcemeter | Keithley | 2651A | |
LabVIEW | National Instruments | Sample program available at: http://sailorgroup.ucsd.edu/sofware/ | |
LysoTracker Green DND-26 | Thermo Fisher Scientific | L7526 | |
Liposome extrusion set with heating block | Avanti Polar Lipids | 610000 | |
Microcon-30kDa Centrifugal Filter Unit | EMD Millipore | MRCF0R030 | |
O-ring | ChemGlass | CG-305-220 | |
Phosphate-buffered saline (PBS) | Thermo Fisher Scientific | 10010-049 | |
Platinum coil | VWR International, LLC | AA10285-BU | |
Potassium hydroxide (KOH) | Fisher Scientific | P250-3 | |
Silicon wafer | Siltronix | Custom order | |
siRNA | Dharmacon | Custom order | IRF5, sense 5’-dTdT-CUG CAG AGA AUA ACC CUG A-dTdT-3’ and antisense 5’-dTdT UCA GGG UUA UUC UCU GCA G dTdT-3’ |
Sonicator | VWR International, LLC | 97043-960 | |
Targeting peptide (CRV) | CPC Scientific | Custom order | sequence CRVLRSGSC; made cyclic by a disulfide bond between the side chains of the two cysteine residues |
Teflon etch cell | Interface Performance Materials, Inc. | Custom order | |
UltraPure DNase/RNase-Free Distilled Water | Thermo Fisher Scientific | 10977015 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados