Method Article
Создание индуцированных плюрипотентных стволовых клеток (ИПСК) линий производит линии различной потенциал развития даже тогда, когда они проходят стандартные тесты для плюрипотентности. Здесь мы опишем протокол для получения мышей полностью проистекает из ИПСК, которое определяет ИПСК линий, обладающих полным плюрипотентности 1.
The production of induced pluripotent stem cells (iPSCs) from somatic cells provides a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. iPSCs may be generated using multiple protocols and derived from multiple cell sources. Once generated, iPSCs are tested using a variety of assays including immunostaining for pluripotency markers, generation of three germ layers in embryoid bodies and teratomas, comparisons of gene expression with embryonic stem cells (ESCs) and production of chimeric mice with or without germline contribution2. Importantly, iPSC lines that pass these tests still vary in their capacity to produce different differentiated cell types2. This has made it difficult to establish which iPSC derivation protocols, donor cell sources or selection methods are most useful for different applications.
The most stringent test of whether a stem cell line has sufficient developmental potential to generate all tissues required for survival of an organism (termed full pluripotency) is tetraploid embryo complementation (TEC)3-5. Technically, TEC involves electrofusion of two-cell embryos to generate tetraploid (4n) one-cell embryos that can be cultured in vitro to the blastocyst stage6. Diploid (2n) pluripotent stem cells (e.g. ESCs or iPSCs) are then injected into the blastocoel cavity of the tetraploid blastocyst and transferred to a recipient female for gestation (see Figure 1). The tetraploid component of the complemented embryo contributes almost exclusively to the extraembryonic tissues (placenta, yolk sac), whereas the diploid cells constitute the embryo proper, resulting in a fetus derived entirely from the injected stem cell line.
Recently, we reported the derivation of iPSC lines that reproducibly generate adult mice via TEC1. These iPSC lines give rise to viable pups with efficiencies of 5-13%, which is comparable to ESCs3,4,7 and higher than that reported for most other iPSC lines8-12. These reports show that direct reprogramming can produce fully pluripotent iPSCs that match ESCs in their developmental potential and efficiency of generating pups in TEC tests. At present, it is not clear what distinguishes between fully pluripotent iPSCs and less potent lines13-15. Nor is it clear which reprogramming methods will produce these lines with the highest efficiency. Here we describe one method that produces fully pluripotent iPSCs and "all- iPSC" mice, which may be helpful for investigators wishing to compare the pluripotency of iPSC lines or establish the equivalence of different reprogramming methods.
Этот метод был использован в исследованиях сообщается в Боланд и соавт. Природы. 461, 91-96 (2009) 1.
1. Подготовка лентивирус
Этот протокол используется доксициклин индуцируемых лентивирусов векторов трансфер которые кодируют Oct4, Sox2, Klf4 и C-Myc под контролем элемент ответа Teto. Трансгенов активируются обратном тетрациклин транс-активирующих белков, rtTAM2.2 16, который индуцирует перепрограммирования фактор выражения в присутствии доксициклина. Эта система позволяет жестко контролируется, высокая экспрессия перепрограммирования факторов. Лентивирусов векторов, используемые здесь, само инактивирующий и, следовательно, не может воспроизвести следующие геномной интеграции. Тем не менее, осторожность требуется при работе с лентивирусов и должна быть выполнена в лаборатории совместимый с BSL2 (США) и S2 (Европа) стандартов.
2. Получение эмбриональных фибробластов мыши (MEF) для перепрограммирования
Примечание: Протокол изложенные здесь относится к выводу ИПСК из E 13,5 мышиных эмбриональных фибробластов для использования в анализах TEC. В то время как другие группы сформировали все ИПСК мышей от взрослого источников донорских клеток, мы не тестировали этот метод на других типах клеток и не может быть уверен, что тип клетки-донора не является решающим фактором.
3. Вывод линий ИПСК
Это может быть полезно, чтобы охарактеризовать ваши ИПСК линии по отношению к ЭСК перед выполнением TEC. Мы охарактеризовали наших линий на 1) экспрессия эндогенных маркеров плюрипотентности (SSEA-1, Oct4, Sox2, Nanog) по иммуноцитохимия, 2) кариотип анализ хромосом подсчета и 3) эмбриоидных формирования тела. Можно также выполнять лентивирусные конкретных RT-КПЦР чтобы подтвердить, что провирусной трансгены не выражается в ИПСК. Тем не менее, мы определили полностью плюрипотентных ИПСК, используя только морфологии, иммунным и karyotypIng. В наших экспериментах, выбор ИПСК линий на основе ESC-как морфология и особенности роста результатов в большинстве линий, экспрессирующих маркеры плюрипотентности в то время как мы обычно выделяют несколько линий с потенциально аномальный кариотип.
4. Подготовка ИПСК для инъекций бластоцисты
Прохождение номер строки PSC было показано, влияют на его плюрипотентности 18, хотя это может быть зависимой линии 19. Мы использовали ИПСК от 8-14 проходов для производства взрослой все ИПСК мыши.
5. Генерация Тетраплоидные бластоцисты
Процедуры выполняются в этом разделе были подробно описаны в других 5,6,20. Здесь мы приводим нашу технику, оптимизированные для BTX Electro Манипулятор сотовых ECM 2001 года.
6. Микроинъекции ИПСК в Тетраплоидные бластоцисты
Мы используем Nikon TE-2000Uинвертированный микроскоп оснащен оптикой DIC и Narishige микроманипуляторы для бластоцисты инъекций. Каждый тетраплоидных бластоцисты вводят 10-12 ИПСК с использованием стандартного протокола для инъекций ESC в бластоцисты мыши, которая была продемонстрирована в предыдущей публикации Юпитера 5,20,21
7. Передача Дополняется Тетраплоидные бластоцисты в рога матки получателя мышей
Дополненный тетраплоидных бластоцисты хирургическим путем передаются в рога матки самок мышей получателя в соответствии с рекомендациями института исследователя, используя стандартную технику 20, которые мы кратко подведем итоги. Выберите женщины CD-1 мышей в про-течки стадии и настроить их для спаривания с vasectomized мужчин. Проверьте, вагинальные пробки на следующее утро. Женщины готовы к матке переноса эмбрионов два дня после того, как пробка была обнаружена (2,5 DPC).
За день до получателя женщин сопряжены с vasectomized мужчин, создать дополнительные CD-1 женщины с не-vasectomized мужчинбудет использоваться в качестве приемных матерей в течение всего ИПСК мышей извлекается кесарево сечение.
8. Кесарева сечения и укрепление ИПСК полученных щенков
Перенос эмбрионов TC обычно приводит к нескольким резорбции после имплантации, даже если ИПСК или ESC линия имеет высокий потенциал развития. В результате, можно ожидать не более 4 жизнеспособных щенков (обычно 1-2) на каждого получателя. Эти небольшие пометы, как правило, пренебрегают получателей. Для повышения уровня неонатальной помощи и выживаемость, мы выполняем кесарева сечения и содействие в соответствии со стандартными протоколами 20. Для выполнения кесарева сечения, усыпить получателя мышей через 16 дней после переноса эмбрионов на 7-8 вечера (получатель 18,5 ЦОД) и анализировать щенков из рога матки. Содействие жизнеспособным щенков CD-1 матерей, которые поставляются пометов в тот же день.
In step 3, "Derivation of iPSCs from MEFs", one should observe morphological heterogeneity and immature iPSC colony formation starting 4-5 days after doxycycline/VPA addition and mature colonies between 7-10 days (Figure 2). The production of one-cell tetraploid embryos in step 5 is highly efficient (Figure 3). We routinely observe up to 95% of treated two-cell embryos successfully fuse to produce tetraploid one-cell embryos. The protocol followed to inject iPSCs into tetraploid blastocysts (Step 6, Figure 4) is similar to the protocol for injection of ESCs into diploid blastocysts to generate chimeric mice, and can be performed by an experienced microinjectionist. The number of live pups born depends on the cell line (Table 1).
MEF preprogramming efficiency 0.01-0.03% | ||||
Efficiency of iPSC mouse production by TEC | ||||
Name | Description | Blastocysts injected | Live Newborn | Live Adult |
iMZ-21 | iPSC | 867 | 53 (6.1%) | 19 (2.2%) |
iMZ-9 | iPSC | 195 | 7 (3.6%) | 4 (2.1%) |
iMZ-11 | iPSC | 338 | 1(0.3%) | 0 (0%) |
Table 1. Representative Results.
Figure 1. Schematic of experimental design. Top left: Production of tetraploid blastocysts. Fertilized two-cell embryos from albino mice are electrofused to generate tetraploid one-cell embryos, which are cultured in vitro to the blastocyst stage. Bottom left: Reprogramming. Mouse embryonic fibroblasts are transduced with lentiviral particles encoding Oct4, Sox2, Klf4 and c-Myc and the reverse tetracycline transactivating protein, rtTAM2.2. Addition of doxycycline results in transgene expression and the initiation of reprogramming to iPSCs. Right: Production of iPSC mice. iPSCs derived from pigmented mice are injected into the blastocoel of tetraploid blastocysts and then surgically implanted into pseudo-pregnant recipient mice. Newborn iPSC mice are delivered by Caesarian section and cross-fostered. Click here to view larger figure.
Figure 2. Morphological changes associated with reprogramming. From left to right: Examples of the morphological progression from fibroblasts to iPSC colonies during the course of a reprogramming experiment. Click here to view larger figure.
Figure 3. Production of tetraploid embryos. Diploid two-cell embryos are subjected to an electric pulse resulting in blastomere fusion and generation of one-cell tetraploid embryos.
Figure 4. Production of iPSC mice. Left: iPSCs are injected into the blastocoel of a tetraploid blastocyst. Middle: Newborn iPSC mice are distinguished by pigmented eyes. Right: iPSC mouse at three weeks post-delivery.
Создание мышей от ИПСК линий с использованием анализов TEC обеспечивает строгий функциональный тест для плюрипотентности ИПСК линии. Этот тест может быть полезной для оценки относительной эффективности различных методов перепрограммирования или выявления ИПСК линий, которые могут быть наиболее полезны для получения определенных типов клеток в пробирке. Мыши, полученные от ИПСК могут быть использованы для строго проверить долгосрочную стабильность и туморогенности ИПСК полученных тканей. Этот протокол будет полезна исследователям желающих генерировать полностью плюрипотентных ИПСК линии или ИПСК мыши или сравнивать относительную полезность различных методов перепрограммирования.
Механизмов, которые управляют генерацией и идентификации полностью плюрипотентных ИПСК остаются плохо понятыми и не исключено, что некоторые линии ИПСК, полученные с использованием данного метода не пройдете тест TEC. Многие факторы могут варьироваться в зависимости от экспериментов в том числе генетические фоны, лентивирусные титр, модели лентивирусные яnsertion, клеточный цикл параметрах донора населения, межлабораторных различий в различные этапы процедуры TEC и переменной наклонности ИПСК питать генетических или эпигенетических отклонений. Чтобы лучше обеспечить успех, мы позаботимся, чтобы установить соответствующие уровни экспрессии генов лентивирусов в ИПСК экспериментов выводу, проверяя вирусных разведения по контролю MEFs, чтобы гарантировать, что каждый вирус достаточно сконцентрированы, чтобы произвести экспрессии этого гена не менее 80%, а в идеале 100% MEFs. Это позволяет нам определить линий с несколькими копиями различных лентивирусов, ограничивая при этом токсичность для MEFs и производстве колонии без переполненности скважин. Следует отметить, что несколько других протоколов было показано, что производят ИПСК с полной потенциал развития, с использованием различных методов и источников донорских клеток предполагая, что несколько путей к полной плюрипотентности может существовать 1,8-13,15. В настоящее время, однако, нет окончательного биомаркера полностью плюрипотентных ИПСКбыла определена и, следовательно, анализ TEC остается золотым стандартом испытаний ли ИПСК линия может генерировать все клеточные клоны в организме.
Нет конфликта интересов объявлены.
Поддержка ККБ, ГСК, JLH и KLN была предоставлена Калифорнийского института регенеративной медицины, Благотворительные фонды Пью биомедицинской программе ученых, Эстер Б. О'Киф семьи и Фонд Шапиро семьи. ККБ является Дональда и Делия В. Baxter фонда факультет Scholar.
Name | Company | Catalog Number | Comments |
DMEM (high glucose) | Invitrogen | 11965-092 | |
ES cell qualified FBS | Invitrogen | 104392-024 | |
FBS | Invitrogen | 16140-071 | |
Glutamax | Invitrogen | 35050-061 | |
β-Mercapt–thanol | Sigma | Sigma M7522 | |
0.1% Gelatin | Millipore | ES006-B | |
MEM Non-Essential Amino Acids | Invitrogen | 11140 | |
Medium 199 | Invitrogen | 11150-059 | |
Penicillin/Streptomycin | Invitrogen | 15140-122 | |
ESGRO (murine LIF) | Millipore | ESG1106 | |
Valproic Acid | Sigma | P4543 | |
DMSO | Fisher | BP231-100 | |
0.25% Trypsin-EDTA | Invitrogen | 25200 | |
PBS Ca2+/Mg2+ | Invitrogen | 14040-133 | |
PBS Ca2+/Mg2+ free | Invitrogen | 14190-144 | |
Pregnant mare serum gonadotropin, for superovulation, freeze-dried, 2,000 IU | Harbor-UCLA Research Institute | n/a | |
Chorionic gonadotropin, human | Sigma | C1063 | |
FHM medium with Hyaluronidase | Millipore | MR-056-F | |
KSOM-1/2 AA medium | Millipore | MR-106-D | |
FHM | Millipore | MR-024-D | |
Water, for embryo transfer, embryo tested | Sigma | W1503 | |
Mineral oil, embryo tested | Sigma | M5310 | |
CaCl2 | Sigma | C7902 | |
MgSO4 | Sigma | M2773 | |
D-Mannitol | Sigma | M4125 | |
Bovine serum albumin (BSA), embryo tested | Sigma | A3311 | |
Mouse embryonic fibroblasts, non-irradiated | Millipore | PMEF-CFL | |
Media and buffers used in this protocol HEK293T growth medium. 90% DMEM, 10% FBS, 100 U/ml penicillin and 10 mg/ml streptomycin. Exclude penicillin and streptomycin from HEK media used on day of transfection. HEK medium can be stored at 4 °C for up to 1 month. 2x HBS. 42 mM Hepes, 274 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4·7H2O, 12 mM Dextrose. pH to 7.1 +/- 0.1. pH is critical! Sterile filter and store at 4 °C. Mouse embryonic fibroblast (MEF) growth medium (also for use with feeders). 70% DMEM, 20% Medium 199, 10% FBS, 100 U/ml penicillin and 10 mg/ml streptomycin. Store at 4 °C for up to 1 month. ESC growth medium. 85% DMEM,15% ES cell qualified FBS, 1x Glutamax, 0.1 mM non-essential amino acids, 0.1 mM β-mercapt–thanol, 1,000 U/ml ESGRO, 100 U/ml penicillin and 10 mg/ml streptomycin. ESC media can be stored at 4 °C for up to three weeks. Electrofusion medium. 0.3 M Mannitol, 0.1 mM MgSO4, 50 mM CaCl2, and 3% BSA in embryo tested water. Store at 4 °C for up to 3 months. |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены