Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
В этом протоколе описаны шаги по использованию автоматизированной платформы Lustro для выполнения высокопроизводительной характеристики оптогенетических систем в дрожжах.
Оптогенетика обеспечивает точный контроль над поведением клеток, используя генетически закодированные светочувствительные белки. Однако оптимизация этих систем для достижения желаемой функциональности часто требует нескольких циклов проектирования-сборки-тестирования, что может быть трудоемким и трудоемким. Чтобы решить эту проблему, мы разработали Lustro, платформу, которая сочетает в себе световую стимуляцию с лабораторной автоматизацией, обеспечивая эффективный высокопроизводительный скрининг и определение характеристик оптогенетических систем.
Lustro использует автоматизированное рабочее место, оснащенное устройством освещения, встряхивающим устройством и считывателем номерных знаков. Используя роботизированную руку, Lustro автоматизирует перемещение микролунки между этими устройствами, позволяя стимулировать оптогенетические штаммы и измерять их реакцию. Этот протокол представляет собой пошаговое руководство по использованию Lustro для характеристики оптогенетических систем для контроля экспрессии генов у почковавшихся дрожжей Saccharomyces cerevisiae. Протокол охватывает настройку компонентов Lustro, включая интеграцию осветительного устройства с автоматизированным рабочим местом. Он также содержит подробные инструкции по программированию осветительного устройства, считывателя пластин и робота, обеспечивая бесперебойную работу и сбор данных на протяжении всего экспериментального процесса.
Оптогенетика является мощным методом, который использует светочувствительные белки для управления поведением клеток с высокой точностью 1,2,3. Однако прототипирование оптогенетических конструкций и определение оптимальных условий освещения может занимать много времени, что затрудняет оптимизацию оптогенетических систем 4,5. Высокопроизводительные методы быстрого скрининга и определения характеристик активности оптогенетических систем могут ускорить цикл «проектирование-строительство-тестирование» для прототипирования конструкций и изучения их функций.
Платформа Lustro была разработана как метод автоматизации лаборатории, предназначенный для высокопроизводительного скрининга и характеризации оптогенетических систем. Он объединяет считыватель микропланшетов, устройство освещения и устройство встряхивания с автоматизированной рабочей станцией6. Lustro сочетает в себе автоматизированное культивирование и световую стимуляцию клеток в микролуночных планшетах (рис. 1 и дополнительный рис. 1), что позволяет проводить быстрый скрининг и сравнение различных оптогенетических систем. Платформа Lustro обладает широкими возможностями адаптации и может быть универсализирована для работы с другими роботами автоматизации лабораторий, устройствами освещения, считывателями пластин, типами клеток и оптогенетическими системами, в том числе реагирующими на различные длины волн света.
Этот протокол демонстрирует настройку и использование Lustro для характеристики оптогенетической системы. Оптогенетический контроль расщепленных транскрипционных факторов у дрожжей используется в качестве примера системы, чтобы проиллюстрировать функцию и полезность платформы путем исследования взаимосвязи между световыми входами и экспрессией флуоресцентного репортерного гена mScarlet-I7. Следуя этому протоколу, исследователи могут оптимизировать оптогенетические системы и ускорить открытие новых стратегий динамического управления биологическими системами.
Штаммы дрожжей, использованные в этом исследовании, описаны в таблице материалов. Эти штаммы демонстрируют устойчивый рост в диапазоне температур от 22 °C до 30 °C и могут культивироваться в различных стандартных дрожжевых средах.
1. Настройка автоматизированного рабочего места
2. Подготовка осветительного прибора
3. Разработка программы световой стимуляции
4. Подготовка считывателя микропланшетов
5. Программирование робота
6. Настройка планшета для образцов
7. Проведение эксперимента
8. Анализ данных
На рисунке 4А показаны значения флуоресценции с течением времени для оптогенетического штамма, экспрессирующего флуоресцентный репортер, контролируемый светоиндуцируемым расщепленным транскрипционным фактором. Различные условия освещения, используемые в экспериме...
Протокол Lustro, представленный здесь, автоматизирует процессы культивирования, освещения и измерения, обеспечивая высокопроизводительный скрининг и определение характеристик оптогенетических систем6. Это достигается за счет интеграции осветительного устройства, считыва...
Авторам нечего раскрывать.
Эта работа была поддержана грантом Национального института здравоохранения R35GM128873 и грантом Национального научного фонда 2045493 (присужден M.N.M.). Меган Николь Макклин, доктор философии, имеет награду за карьеру в Scientific Interface от Burroughs Wellcome Fund. Z.P.H. был поддержан грантом NHGRI на обучение в рамках учебной программы геномных наук 5T32HG002760. Мы признательны за плодотворные дискуссии с сотрудниками лаборатории McClean, и, в частности, благодарны Кирану Суини (Kieran Sweeney) за комментарии к рукописи.
Name | Company | Catalog Number | Comments |
96-well glass bottom plate with #1.5 cover glass | Cellvis | P96-1.5H-N | |
BioShake 3000-T elm (heater shaker) | QINSTRUMENTS | ||
Fluent Automation Workstation | Tecan | ||
LITOS (alternative illumination device) | Hohener, et al. Scientific Reports. 2022 | ||
optoPlate-96 (illumination device) | Bugaj, et al. Nature Protocols. 2019 | ||
Robotic Gripper Arm | Tecan | ||
Spark (plate reader) | Tecan | ||
Synthetic Complete media | SigmaAldrich | Y1250 | |
Tecan Connect (user alert app) | Tecan | ||
yMM1734 (BY4741 Matα ura3Δ0::5' Ura3 homology, pRPL18B-Gal4DBD-eMagA-tENO1, pRPL18B-eMagB-Gal4AD-tENO1, pGAL1-mScarlet-I-tENO1, Ura3, Ura 3' homology his3D1 leu2D0 lys2D0 gal80::KANMX gal4::spHIS5) | Harmer, et al. ACS Syn Bio. 2023 | ||
yMM1763 (BY4741 Matα ura3Δ0::5' Ura3 homology, pRPL18B-Gal4DBD-CRY2(535)-tENO1, pRPL18B-Gal4AD-CIB1-tENO1, pGAL1-mScarlet-I-tENO1, Ura3, Ura 3' homology his3D1 leu2D0 lys2D0 gal80::KANMX gal4::spHIS5) | Harmer, et al. ACS Syn Bio. 2023 | ||
yMM1765 (BY4741 Matα ura3Δ0::5' Ura3 homology, pRPL18B-Gal4DBD-eMagA-tENO1, pRPL18B-eMagBM-Gal4AD-tENO1, pGAL1-mScarlet-I-tENO1, Ura3, Ura 3' homology his3D1 leu2D0 lys2D0 gal80::KANMX gal4::spHIS5) | Harmer, et al. ACS Syn Bio. 2023 | ||
YPD Agar | SigmaAldrich | Y1500 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены