A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The vascular endothelial cells play a significant role in many important cardiovascular disorders. This article describes a simple method to isolate and expand endothelial cells from the mouse aorta without using any special equipment. Our protocol provides an effective means of identifying mechanisms in endothelial cell physiopathology.
The vascular endothelium is essential to normal vascular homeostasis. Its dysfunction participates in various cardiovascular disorders. The mouse is an important model for cardiovascular disease research. This study demonstrates a simple method to isolate and culture endothelial cells from the mouse aorta without any special equipment. To isolate endothelial cells, the thoracic aorta is quickly removed from the mouse body, and the attached adipose tissue and connective tissue are removed from the aorta. The aorta is cut into 1 mm rings. Each aortic ring is opened and seeded onto a growth factor reduced matrix with the endothelium facing down. The segments are cultured in endothelial cell growth medium for about 4 days. The endothelial sprouting starts as early as day 2. The segments are then removed and the cells are cultured continually until they reach confluence. The endothelial cells are harvested using neutral proteinase and cultured in endothelial cell growth medium for another two passages before being used for experiments. Immunofluorescence staining indicated that after the second passage the majority of cells were double positive for Dil-ac-LDL uptake, Lectin binding, and CD31 staining, the typical characteristics of endothelial cells. It is suggested that cells at the second to third passages are suitable for in vitro and in vivo experiments to study the endothelial biology. Our protocol provides an effective means of identifying specific cellular and molecular mechanisms in endothelial cell physiopathology.
The vascular endothelium is not only a barrier layer that separates blood and tissue, it is considered a vast endocrine gland that stretches over the entire vascular tree with a surface area of 400 square meters1. The well-being of the endothelium is essential to vascular homeostasis. The dysfunctional endothelium participates in various cardiovascular disorders, including atherosclerosis, vasculitis and ischemia/reperfusion injuries, etc. 2-4. To date, the specific cellular and molecular mechanisms involved in these disease settings are not well understood due to the diffused anatomic nature of endothelium.
The mouse is an important model for research because genetic manipulation techniques are more developed in mice than in any other mammalian species. However, the isolation of primary murine aortic endothelial cells is considered particularly difficult because the small size of the aorta makes enzymatic digestion of endothelium impractical. Some reported procedures to isolate and purify ECs require 5-7.
The goal of this protocol is to use a simple method to isolate and expand endothelial cells from the mouse aorta without using any special equipment. In this protocol, the freshly isolated aorta is cut into small segments and seeded onto a matrix with the endothelium facing down to allow for endothelial sprouting. After segments are removed, endothelial cells are expanded in endothelium-favored medium and are ready for experiments after two or three passages. The advantages of the described method are that: 1) considerably high numbers of endothelial cells are harvested from a single aorta; 2) cell viability is well preserved; and 3) no special equipment or technique is needed. It provides an effective means of identifying specific cellular and molecular mechanisms in endothelial cell pathophysiology. For those who are interested in studying primary cultured endothelial cells from either gene knock-out mice, gene knock-in mice, or a murine disease model, this protocol is very useful and easy to practice.
Access restricted. Please log in or start a trial to view this content.
1. Isolation of Aorta from Mice
All the procedures described here were approved by the Institutional Animal Care and Use Committee of Wayne State University.
2. Seed the Aortic Segments on Matrix
3. Initial Passaging of the Mouse Aortic Endothelial Cells
4. Passaging of the Mouse Aortic Endothelial Cells
5. Characterization of the Mouse Aortic Endothelial Cells
Access restricted. Please log in or start a trial to view this content.
Endothelial Cell Sprouting
Spontaneous endothelial cell sprouting started from a mouse aorta segment. The mouse aorta segment was allowed to grow on a growth factor-reduced matrix then in endothelial cell growth medium for 4 days. The endothelial cell sprouting usually appears in 2 - 4 days. Photomicrographs were taken on day 4 (Figure 1). As shown in the pictures, numerous endothelial cells migrate away from the segment. The newly formed sprouts continue to e...
Access restricted. Please log in or start a trial to view this content.
This study demonstrates a simple method to isolate and culture endothelial cells from a mouse aorta without any special equipment. The immunofluorescence staining indicated that the majority of cells were endothelial cells after the second passage. It is suggested that cells at second to third passage are suitable for in vitro and in vivo experiments to study endothelial biology.
The Key Notes from the Present Protocol
There are fi...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This study is supported by American Heart Association Scientist Development Grant 13SDG16930098 and the National Science Foundation of China Youth Award 81300240 (PI: Wang). We thank Roberto Mendez from Wayne State University for assisting in the preparation of the manuscript.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
4- or 6-week-old mice | Jackson Laboratory | #000664 | |
Sterile 1x phosphate-buffered saline (PBS) | Gibco | #10010-023 | |
Sterile 1x PBS containing 1,000 U/mL of heparin | Sigma Aldrich | H3149 | |
Endothelial cell growth medium (Dulbeccos’ Modified Eagle’s Medium [DMEM] with 25 mM HEPES [Gibco, #12320-032], supplemented with 100 μg/mL endothelial cell growth supplement from bovine neural tissue [ECGS, Sigma, #2759], 10% fetal bovine serum [FBS, Gibco, #10082-147], 1,000 U/mL heparin [Sigma Aldrich, H3149], 10,000 U/mL penicillin and 10 mg/mL streptomycin [Gibco, #15140-122]) | |||
Growth factor reduced matrix | BD Biosciences | 356231 | |
Neutral proteinase (Dispase, 1 U/mL, Fisher Scientific, #CB-40235) and D-Val medium (D-Valine, 0.034 g/L, Sigma, #1255), in Dulbeccos’ Modified Eagle’s Medium, low glucose (Gibco, #12320-032) | |||
1,1'-dioctadecyl-3,3,3',3'- tetramethylindo-carbocyanine perchlorate-labeled acetylated LDL (Dil-ac-LDL) | Life Technologies | L3484 | |
FITC-labeled Ulex europaeus agglutinin (Ulex-Lectin) | Sigma | L9006 | |
Anti-mouse CD31-FITC conjugated antibody | BD Biosciences | 553372 | |
Anti-mouse vascular endothelial growth factor receptor 2 antibody | Cell Signaling | 9698 | |
Anti-mouse endothelial nitric oxide synthase | Abcam | ab5589 | |
Anti-mouse vascular endothelium-cadherin | Abcam | 33168 | |
Anti-mouse calponin | Abcam | 700 | |
FITC-conjugated anti-rabbit IgG | Sigma | F6005 | |
1 mL syringe fitted with 25-G needle | Fisher Scientific | 50-900-04222 | |
100 mm Peri dishes | Fisher Scientific | 07-202-516 | |
Six-well cell culture plates | Fisher Scientific | 08-772-1B | |
T12.5 culture flask | Fisher Scientific | 50-202-076 | |
Scissors, forceps, microdissection scissors and forceps, Scalpel blade | Fine Science Tools, Inc. | ||
Anesthesia machine with isoflurane | Webster Veterianary Supply | 07-806-3204 | |
heating lamp | |||
Centrifuge machine | |||
Inverted phase-contrast microscope | |||
inverted fluorescence microscope |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved