JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Optimal Lentivirus Production and Cell Culture Conditions Necessary to Successfully Transduce Primary Human Bronchial Epithelial Cells

Published: July 22nd, 2016



1Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Miami, Miller School of Medicine, 2Department of Cell Biology, University of Miami, Miller School of Medicine

Primary human bronchial epithelial cells are difficult to transduce. This protocol describes the production of lentiviruses and their concentration as well as the optimal culture conditions necessary to achieve highly efficient transductions in these cells throughout differentiation to a pseudostratified epithelium.

In vitro culture of primary human bronchial epithelial (HBE) cells using air-liquid interface conditions provides a useful model to study the processes of airway cell differentiation and function. In the past few years, the use of lentiviral vectors for transgene delivery became common practice. While there are reports of transduction of fully differentiated airway epithelial cells with certain non-HIV pseudo-typed lentiviruses, the overall transduction efficiency is usually less than 15%. The protocol presented here provides a reliable and efficient method to produce lentiviruses and to transduce primary human bronchial epithelial cells. Using undifferentiated bronchial epithelial cells, transduction in bronchial epithelial growth media, while the cells attach, with a multiplicity of infection factor of 4 provides efficiencies close to 100%. This protocol describes, step-by-step, the preparation and concentration of high-titer lentiviral vectors and the transduction process. It discusses the experiments that determined the optimal culture conditions to achieve highly efficient transductions of primary human bronchial epithelial cells.

The development of replication-defective, pseudotyped lentiviruses (LV) has provided researchers with a safe and efficient method to deliver transgenes in vitro 1. Due to their long-term expression, these LV could also be used for the delivery of therapeutic agents in vivo 2,3. The production of LV requires co-transfection of human embryonic kidney (HEK) cells with several plasmids: transfer vector, packaging gag/pol, packaging rev, and envelope vesicular stomatitis virus glycoprotein (VSV-G) plasmids. Third-generation packaging systems are considered safer than second-generation systems because the

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Stage 1: Culture of HEK 293T

  1. Prepare HEK cells media (referred as HEK media) by adding 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin/streptomycin to high glucose Dulbecco's Modified Eagle's Medium (DMEM).
  2. Coat one 10 cm tissue culture dish with collagen I. Mix 30 µl of collagen I in 2 ml of distilled water. Spread the mix onto the dish and incubate for 2 hr at 37 °C and 5% CO2.
  3. Remove the mix and let the dish dry in a laminar flow cabinet for 15.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 1 depicts different key steps of assessing cells and solutions during the transfection process. Figure 1a shows the optimal confluency of HEK293T cells prior to transfection for virus production. It is important that the cells are distributed evenly throughout the dish. Figure 1b reveals the precipitate in a drop of the transfection mixture using bright field optics and a 10X objective. The more the precipitates look like sand grai.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol outlined here assures close to 100% transduction efficiencies. However, there are steps during the process that are important to achieve this goal. For instance, during the transfection process, the presence of precipitates in the transduction mix (drop) or in the dish the day after transduction (Figures 1b and d) are both relevant for a good transfection. The absence of a precipitate or the presence of agglomerates can be due to an omission of one of the transfection reagen.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank the Life Alliance Organ Recovery Agency of the University of Miami for providing lungs. We also thank Dr. Lisa Künzi for the DNA preparation used for the experiments shown in Figure 2B and 3-D, Dr. Ben Gerovac and Lisa Novak for the mCherry virus used for the experiments in Figures 3A to C. We also thank Gabriel Gaidosh from the imaging facility, Department of Ophthalmology at the University of Miami.

This study has been sponsored by grants from the NIH, the CF Foundation and the Flight Attendant Medical Research Institute to Dr. Matthias Salathe.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
HEK293T/17 cells ATCC CRL-11268
Fetal bovine serum (FBS)  Sigma 12306C use at 10%
DMEM Thermo Scientific 11995-040
Penicillin/Streptomycin (100x) Thermo Scientific 15140-122 use at 1x
Collagen I BD Biosciences 354231 dilute 1:75 in distilled water
Calphos Clontech 631312 Transfection kit containing 2M Calcium solution, 2X HEPES-Buffered solution (HBS) and sterile H2O
Polythylene glycol 8000 VWR scientific 101108-210 stock of 40%
Amphotericin B Sigma A9528 use at 1x
Trypsin Sigma T4799
Soybean trypsin inhibitor Sigma T9128
Transwell 12mm Corning 3460
Collagen IV Sigma C7521 dilute 1:10 in distilled water
Hexadimethrine bromide Sigma H9268 stock of 2mg/ml
Puromycin (10.000x) Thermo Scientific A11138-03 use at 1x
Alliance HIV-1 p24 ELISA PerkinElmer NEK050001KT
F12 Thermo Scientific 11765-054
pCDH-EF1-MCS-IRES-Puro System Biosciences CD532A-2 lentiviral expression vector
pMD2-VSVG Addgene 12259 packaging DNA
pMDLg/pRRE Addgene 12251 packaging DNA
pRSV-rev Addgene 12253 packaging DNA

  1. Ding, B., Kilpatrick, D. L. Lentiviral vector production, titration, and transduction of primary neurons. Methods Mol Biol. 1018, 119-131 (2013).
  2. Sinn, P. L., Sauter, S. L., McCray, P. B. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther. 12, 1089-1098 (2005).
  3. Cribbs, A. P., Kennedy, A., Gregory, B., Brennan, F. M. Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnol. 13, (2013).
  4. Delenda, C. Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med. 6 Suppl 1, S125-S138 (2004).
  5. Gresch, O., Altrogge, L. Transfection of difficult-to-transfect primary mammalian cells. Methods Mol Biol. 801, 65-74 (2012).
  6. Jordan, E. T., Collins, M., Terefe, J., Ugozzoli, L., Rubio, T. Optimizing electroporation conditions in primary and other difficult-to-transfect cells. J Biomol Tech. 19, 328-334 (2008).
  7. Castillon, N., et al. Regeneration of a well-differentiated human airway surface epithelium by spheroid and lentivirus vector-transduced airway cells. J Gene Med. 6, 846-856 (2004).
  8. Fulcher, M. L., Gabriel, S., Burns, K. A., Yankaskas, J. R., Randell, S. H. Well-differentiated human airway epithelial cell cultures. Methods Mol Med. 107, 183-206 (2005).
  9. Gonzalez-Mariscal, L., et al. Role of calcium in tight junction formation between epithelial cells. Am J Physiol. 259, C978-C986 (1990).
  10. Bals, R., et al. Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry. J Virol. 73, 6085-6088 (1999).
  11. Ricks, D. M., Kutner, R., Zhang, X. Y., Welsh, D. A., Reiser, J. Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 17, 441-450 (2008).
  12. Davis, H. E., Morgan, J. R., Yarmush, M. L. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem. 97, 159-172 (2002).
  13. Horani, A., Nath, A., Wasserman, M. G., Huang, T., Brody, S. L. Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction. Am J Respir Cell Mol Biol. 49, 341-347 (2013).
  14. Manzanares, D., et al. Functional apical large conductance, Ca2+-activated, and voltage-dependent K+ channels are required for maintenance of airway surface liquid volume. J Biol Chem. 286, 19830-19839 (2011).
  15. Schmid, A., et al. Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells. J Cell Sci. 119, 4176-4186 (2006).
  16. Unwalla, H. J., Ivonnet, P., Dennis, J. S., Conner, G. E., Salathe, M. Transforming growth factor-beta1 and cigarette smoke inhibit the ability of beta2-agonists to enhance epithelial permeability. Am J Respir Cell Mol Biol. 52, 65-74 (2015).
  17. Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z., Gijsbers, R. Comparison of lentiviral vector titration methods. BMC Biotechnol. 6, (2006).
  18. Schneiderman, S., Farber, J. L., Baserga, R. A simple method for decreasing the toxicity of polyethylene glycol in mammalian cell hybridization. Somatic Cell Genet. 5, 263-269 (1979).
  19. Schmid, A., et al. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J Gen Physiol. 130, 99-109 (2007).
  20. Manzanares, D., et al. Airway Surface Dehydration by Transforming Growth Factor beta (TGF-beta) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone. J Biol Chem. 290, 25710-25716 (2015).
  21. Manzanares, D., et al. IFN-gamma-mediated reduction of large-conductance, Ca2+-activated, voltage-dependent K+ (BK) channel activity in airway epithelial cells leads to mucociliary dysfunction. Am J Physiol Lung Cell Mol Physiol. 306, L453-L462 (2014).
  22. Chen, X., et al. A soluble adenylyl cyclase form targets to axonemes and rescues beat regulation in soluble adenylyl cyclase knockout mice. Am J Respir Cell Mol Biol. 51, 750-760 (2014).
  23. Ransford, G. A., et al. Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol. 41, 525-534 (2009).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved