A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A method for stabilizing and separating native protein complexes from unmodified tissue lysate using an amine-reactive protein cross-linker coupled to a novel two-dimensional polyacrylamide gel electrophoresis (PAGE) system is presented.
There are many well-developed methods for purifying and studying single proteins and peptides. However, most cellular functions are carried out by networks of interacting protein complexes, which are often difficult to investigate because their binding is non-covalent and easily perturbed by purification techniques. This work describes a method of stabilizing and separating native protein complexes from unmodified tissue using two-dimensional polyacrylamide gel electrophoresis. Tissue lysate is loaded onto a non-denaturing blue-native polyacrylamide gel, then an electric current is applied until the protein migrates a short distance into the gel. The gel strip containing the migrated protein is then excised and incubated with the amine-reactive cross-linking reagent dithiobis(succinimidyl propionate), which covalently stabilizes protein complexes. The gel strip containing cross-linked complexes is then cast into a sodium dodecyl sulfate polyacrylamide gel, and the complexes are separated completely. The method relies on techniques and materials familiar to most molecular biologists, meaning it is inexpensive and easy to learn. While it is limited in its ability to adequately separate extremely large complexes, and has not been universally successful, the method was able to capture a wide variety of well-studied complexes, and is likely applicable to many systems of interest.
Normal cellular function is dependent on protein-protein interactions1,2. As a result, human diseases are often marked by perturbations in the assembly and behavior of various protein complexes3. The ability to characterize such interactions is therefore critical. Current means of detecting these interactions require purification of target proteins, often followed by pull-down of their interacting partners. Conventional purification is accomplished by differential centrifugation, precipitation, and/or chromatography4. These methods are time-consuming, must be altered for each target protein, and often result in low yields. Modern purification methods involve the fusion of peptide tags to target proteins, followed by immunoprecipitation or extraction on columns loaded with beads bound to a capture molecule5,6. While this is extensible to many proteins, it requires sequence modification of the target, potentially resulting in constructs that differ in affinity for their usual binding partners. The delicate nature of some protein-protein interactions means this method may not be applicable to many scenarios. Additionally, the pull-down assays used to map protein-protein interactions may not capture an accurate cellular picture, due to restricted degrees of freedom and non-native levels of the bait protein.
Ideally, protein complexes could be detected in their native states, without the need for purification or pull-down. Blue native polyacrylamide gel electrophoresis (BN-PAGE) was developed as a less-denaturing alternative to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and allows for the separation of some proteins and complexes from biological samples7. However, proteins in BN-PAGE separate based on a large number of variables, including size, charge, three-dimensional structure, and association with other molecules. The interactions of these factors often result in co-separation of proteins, aggregate formation, and poor protein band resolution. Two-dimensional native-polyacrylamide gel electrophoresis resolves some, but not all, of these problems8.
To circumvent the complications associated with native separation, some authors use amine-reactive cross-linking reagents, such as dithiobis(succinimidyl propionate) (DSP), to capture protein complexes in tissue lysates4. These treated lysates can then be denatured and separated by SDS-PAGE, while preserving the native size and makeup of protein complexes. However, since cross-linking reagents react based on proximity of one molecule to another, and proteins in tissue lysates have many degrees of freedom and can stochastically interact, nonspecific background cross-linking can be high, especially in concentrated samples. This can lead to difficult-to-interpret results.
Here, we demonstrate the use of a hybrid BN-PAGE/SDS-PAGE method, termed multimer-polyacrylamide gel electrophoresis (multimer-PAGE), to separate and detect protein assemblies in complex mixtures. Initially, cell lysate is suspended in polyacrylamide gel via BN-PAGE. The lysate-containing gel is then reacted with the cross-linking reagent DSP. Pseudo-immobilized and slightly separated on the gel, proteins are much less likely to react nonspecifically, meaning background cross-linker reactivity is reduced. After cross-linking, the gel bands are excised and separated via SDS-PAGE. The resultant gel can then be analyzed by any means typically associated with polyacrylamide gel electrophoresis. This method allows for the separation and detection of native protein complexes in unmodified tissue lysate, without the need for additional purification or pull-down.
Access restricted. Please log in or start a trial to view this content.
1. Tissue Preparation
2. BN-PAGE
3. Cross-linking
NOTE: Perform Steps 3.1-3.6 at 4 °C.
4. SDS-PAGE
Access restricted. Please log in or start a trial to view this content.
In this demonstration experiment, multimer-PAGE was performed on whole rat brain lysate. The resultant separated proteins were blotted onto polyvinylidene diflouride (PVDF) membranes, and then probed with antibodies against proteins that are known to form complexes. Figure 1 shows a validation of the protocol by two means. First, we demonstrate that the cross-linked proteins are cleavable by addition of a reducing agent, meaning the observed higher molecular weight specie...
Access restricted. Please log in or start a trial to view this content.
Protein-protein interactions are important for every task living things carry out. Because of this, they are the subject of intense scrutiny and research. Multimer-PAGE is a novel method for capturing, separating, and analyzing a wide range of protein complexes. We have previously demonstrated its applicability to studying oligimerization of the disease-associated protein α-synuclein11. However, it is extensible to many protein complexes, as demonstrated in Figure 2. When com...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
Supported by the NIH/NIDA DA034783. We thank Bryan A. Killinger for technical assistance with the multimer-PAGE.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Chemicals | |||
ε-Aminocaproic acid | Sigma | A2504 | |
Acrylamide | Acros Organics | 164855000 | Toxic. |
Acrylamide/bisacrilamide 37.5:1 (40%T stock solution) | BioRad | 161-0148 | Toxic. |
Ammonium persulfate | Sigma | A3678 | |
Anti rabbit IgG-HRP from goat | Santa Cruz Biotechnology | sc-2004 | |
Bicinchoninic acid assay kit | Thermofisher | 23225 | |
Bis-tris | Sigma | B9754 | |
Bovine serum albumin | Sigma | A9647 | |
Butanol | Fisher Scientific | A399-1 | |
Chemiluminescence substrate kit | ThermoFisher | 24078 | |
Coomassie blue G-250 | Sigma-Aldrich | B0770 | |
Digitonin | Sigma | D141 | Toxic. |
Dimethyl sulfoxide | Fisher Scientific | D128-1 | |
Dithiobis(succinimidylpropionate) | Thermo Scientific | 22585 | |
Dry nonfat milk | LabScientific | M0841 | |
Glycerol | Sigma | G9012 | |
Glycine | Fisher Scientific | BP381-5 | |
Halt Protease Inhibitor Cocktail | Thermofisher | 78430 | |
Hydrochloric acid | Fisher Scientific | A144SI-212 | For titration. Caustic. |
Methanol | Fisher Scientific | A412-4 | For PVDF membrane activation. Toxic. |
Monoclonal anti α-synuclein IgG from rabbit | Santa Cruz Biotechnology | sc-7011-R | |
N,N,N',N'-tetramethylethylenediamine | Sigma | T9281 | |
N,N'-methylenebisacrylamide | Acros Organics | 16479 | Toxic. |
NP40 | Boston Bioproducts | P-872 | |
Polysorbate 20 (tween-20) | Fisher Scientific | BP337-500 | |
Polyvinylidene fluoride transfer membranes | Thermo Scientific | 88518 | |
Ponceau S | Sigma | P3504 | |
Potassium chloride | Fisher Scientific | P217-3 | |
Potassium phosphate monobasic | Sigma | P9791 | |
Protease inhibitor cocktail | Thermo Scientific | 88265 | |
SDS solution (10% w/v) | BioRad | 161-0416 | |
Sodium chloride | Fisher Scientific | BP358-212 | |
Sodium dodecyl sulfate | Sigma | L37771 | |
Sodium phosphate monobasic | Fisher Scientific | BP329-1 | |
Tricine | Sigma | T0377 | |
Tris base | Fisher Scientific | BP152-500 | |
Tris-HCl (0.5 M buffer, pH 6.8) | BioRad | 161-0799 | |
Tris-HCl (1.5 M buffer, pH 8.8) | BioRad | 161-0798 | |
Name | Company | Catalog Number | Comments |
Instruments | |||
GE Imagequant LAS 4000 | GE Healthcare | 28-9558-10 | |
ImageJ software | NIH | ||
Synergy H1 microplate reader | BioTek | ||
Gel Former + Stand | Biorad | ||
Microfuge 22R centrifuge | Beckman Coulter | ||
2 mL dounce homogenizer | |||
Vortex mixer | Fisher Scientific | ||
Ultrasonic tissue homogenizer | Fisher Scientific | FB120220 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved