A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a protocol to quantitatively determine phycobiliprotein content in the cyanobacterium Synechocystis using a spectrophotometric method. The extraction procedure was also successfully applied to other cyanobacteria and algae strains; however, due to variations in pigment absorption spectra, it is necessary to test the spectrophotometric equations for each strain individually.
This is a simple protocol for the quantitative determination of phycobiliprotein content in the model cyanobacterium Synechocystis. Phycobiliproteins are the most important components of phycobilisomes, the major light-harvesting antennae in cyanobacteria and several algae taxa. The phycobilisomes of Synechocystis contain two phycobiliproteins: phycocyanin and allophycocyanin. This protocol describes a simple, efficient, and reliable method for the quantitative determination of both phycocyanin and allophycocyanin in this model cyanobacterium. We compared several methods of phycobiliprotein extraction and spectrophotometric quantification. The extraction procedure as described in this protocol was also successfully applied to other cyanobacteria strains such as Cyanothece sp., Synechococcuselongatus, Spirulina sp., Arthrospira sp., and Nostoc sp., as well as to red algae Porphyridium cruentum. However, the extinction coefficients of specific phycobiliproteins from various taxa can differ and it is, therefore, recommended to validate the spectrophotometric quantification method for every single strain individually. The protocol requires little time and can be performed in any standard life science laboratory since it requires only standard equipment.
fPhycobiliproteins are water-soluble pigment-protein complexes that represent major components of the light-harvesting antennae in prokaryotic cyanobacteria (Cyanophyta) and several eukaryotic taxa (Glaucophyta, Rhodophyta, and Cryptophyta)1. They occur mainly as supramolecular complexes called phycobilisomes and they are typically attached to the surface of the photosynthetic membranes on the stromal side, with the exception of Cryptophyta, where the phycobiliproteins are localized in the thylakoid lumen2. Four types of phycobiliproteins have been identified up to date: the core allophycocyanin, and the peripheral phycocyanin, phycoerythrin, and phycoerythrocyanin1. As the main light-harvesting complexes, phycobilisomes represent one of the crucial factors of algae and cyanobacteria mass cultures productivity. It has been demonstrated that phycobilisomes truncation can enhance biomass accumulation under strong light3. On the other hand, under modest or low irradiance, the antenna truncation resulted in growth rates and biomass accumulation reduction3,4. Phycobiliproteins are commercially used as food colorants, pharmaceuticals, and food additives, in the cosmetic industry, and as fluorescence probes with applications in flow cytometry, fluorescent immunoassays, and fluorescence microscopy5.
This protocol focuses on the quantitative determination of phycobiliproteins in the model cyanobacterium Synechocystis. Cyanobacteria are the earliest oxygenic photosynthetic autotrophs; they have been forming the Earth's biosphere for more than 2.4 billion years6. They play a crucial role in global biogeochemical cycles of nitrogen, carbon, oxygen, and other elements. Among cyanobacteria, a unicellular strain Synechocystis gained a unique position since it was the first cyanobacterium with the entire genome sequenced7,8, it is naturally transformable by exogenous DNA9, and it performs stable and relatively fast growth10,11. In Synechocystis, the core antenna component, allophycocyanin, is associated with the integral membrane proteins, and the attached phycocyanin is located on the thylakoid membrane periphery.
Several methods for phycobiliprotein extraction and quantification are compared within this protocol. The final extraction procedure was successfully applied to Synechocystis, as well as to other cyanobacteria strains, including Cyanothece sp., Synechococcuselongatus, Spirulina sp., Arthrospira sp., and Nostoc sp., and it was also successfully applied to red algae Porphyridium cruentum. Therefore, the method developed in this protocol can be considered as a universal method for phycobiliprotein extraction. Even though some of the tested extraction methods resulted in higher total protein yields, the here described extraction procedure provided the highest phycobiliprotein yields together with the lowest content of chlorophyll a residue in the phycobiliprotein extract. Reducing the content of chlorophyll a was essential for the correct phycocyanin and allophycocyanin spectrophotometric quantification.
The phycobiliprotein absorption spectra can vary significantly among various algae and cyanobacteria species12,13,14,15,16,17 and even among several strains of a single cyanobacteria genus18. Therefore, the specific wavelengths and absorption coefficients as used for the determination of phycocyanin and allophycocyanin in Synechocystis are not generally applicable to other strains. Additionally, Synechocystis does not contain phycoerythrin and phycoerythrocyanin that can be found in some other algae and cyanobacteria. For the purpose of the determination of phycobiliproteins in strains other than Synechocystis, it is recommended to evaluate the spectrophotometric equations for each strain individually.
Although the protocol contains two longer steps (overnight freeze-drying of the cellular pellets and 1-hour protein extraction), the total labor time for the phycobiliproteins quantification is no longer than 2 hours.
1. Cyanobacteria Cultivation
2. Samples Preparation
3. Cell Homogenization and Pigments Extraction
4. Phycobiliprotein Quantification
5. Determination of the Cell Dry Weight (Optional)
For the initial method tests, Synechocystis was cultivated as batch cultures in Erlenmeyer flasks on a shaker in BG11 cultivation medium20 (supplemented with 17 mM HEPES) at 25 °C, under a warm white light of an intensity of 50 µmol(photons)/(m2·s) and with 1% CO2 in the culturing atmosphere. During the cultivation, the cultures were sampled to safe-lock tubes and centrifuged (15,000 x g at laboratory temperatu...
This protocol describes a simple, fast, and reproducible method for the quantification of phycobiliprotein content in the model cyanobacterium Synechocystis. Several methods of cell homogenization, protein extraction, and phycocyanin and allophycocyanin quantification are compared, and the final protocol represents a combination of the optimal steps of every single procedure. As representative data, the content of phycobiliproteins was quantified in Synechocystis cells under increasing light intensity. ...
The authors have nothing to disclose.
The protocol was adopted from a previous publication11. T. Z., D. Ch., and J. Č. were supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I), grant number LO1415. J. Č. was also supported by GA CR, Grant number 18-24397S. Access to instruments and other facilities was supported by the Czech research infrastructure for systems biology C4SYS (project no LM2015055). M. A. S. was supported by a grant from the Russian Science Foundation [no. 14-14-00904].
Name | Company | Catalog Number | Comments |
Synechocystis sp. PCC 6803 | Institut Pasteur, Paris, France | 6803 | Cyanobacterium strain |
Roti-CELL PBS | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | 9143.1 | Phosphate-Buffered Saline (PBS) solution, pH 7.4 |
Eppendorf safe-lock tubes | Eppendorf, Hamburk, Germany | 30120086 | Safe-lock tubes 1.5 ml |
VWR 80-Place Storage System | VWR International, Radnor, Pennsylvania, USA | 30128-282 | Holder for safe-lock tubes |
RAININ 100 µl -1000 µl | Mettler-Toledo, Columbus, Ohio, USA | 17014382 | Pipette |
GP-LTS-A-1000µL-/F-768/8 | Mettler-Toledo, Columbus, Ohio, USA | 30389272 | Pipette tips |
Rotina 420R | Hettich, Kirchlengern, Germany | 4701 | Refrigerated centrifuge for 1.5 ml safe-lock tubes and 15 ml conical centrifuge tubes |
LCexv 4010 | Liebherr, Bulle, Switzerland | 9005382197172 | Refrigerator and freezer -20 °C |
Revco ExF -86°C Upright Ultra-Low Temperature Freezer | Thermo Fisher Scientific, Waltham, Massachusetts, USA | EXF24086V | Freezer -80 °C |
CoolSafe | LaboGene, Lillerød, Denmark | 7.001.000.615 | Freeze dryer |
UV-2600 | Shimadzu, Kyoto, Japan | UV-2600 | Spectrophotometer |
Hellma absorption cuvettes, semi Micro | Sigma-Aldrich, St. Louis, Missouri, USA | Z600288 | VIS/UV-VIS semi-micro cuvettes 0.75-1.5 ml, spectral range 200-2500 nm |
Silamat S6 | Ivoclar Vivadent, Schaan, Liechtenstein | 602286WU | Homogenizer |
Solid-glass beads | Sigma-Aldrich, St. Louis, Missouri, USA | Z273627 | Glass bead of the diameter 2 mm |
CPA225D-0CE | Sartorius AG, Göttingen, Germany | SECURA225D-1OBR | Analytical balances |
C-Phycocyanin from Spirulina sp. | Sigma-Aldrich, St. Louis, Missouri, USA | P2172 | Phycocyanin standard |
Allophycocyanin | Sigma-Aldrich, St. Louis, Missouri, USA | A7472 | Allophycocyanin standard |
Bicinchoninic Acid Kit | Sigma-Aldrich, St. Louis, Missouri, USA | BCA1, B9643 | Complete kit for total proteins determination |
AlgaeTron | Photon System Instruments Ltd., Drásov, Czech Republic | AG 130-ECO | Cultivation chamber for E. flasks, with controllable light and atmosphere |
Photobioreactor | Photon System Instruments Ltd., Drásov, Czech Republic | FMT-150 | Cultivation equipment for cyanobacteria and algae with completely controllable environment |
Cellometer | Nexcelom Bioscience, Lawrence, Massachusetts, USA | Auto M10 | Cell counter |
Corning 15 mL centrifuge tubes | Sigma-Aldrich, St. Louis, Missouri, USA | CLS430791 | 15 ml Centrifuge tube for dry weigth sampling |
Herasafe KS | Thermo Fisher Scientific, Waltham, Massachusetts, USA | 51024579 | Laminar flow hood |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved