A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we present a protocol to automatically determine the locomotor performance of Drosophila at changing temperatures using a programmable temperature-controlled arena that produces fast and accurate temperature changes in time and space.
Temperature is a ubiquitous environmental factor that affects how species distribute and behave. Different species of Drosophila fruit flies have specific responses to changing temperatures according to their physiological tolerance and adaptability. Drosophila flies also possess a temperature sensing system that has become fundamental to understanding the neural basis of temperature processing in ectotherms. We present here a temperature-controlled arena that permits fast and precise temperature changes with temporal and spatial control to explore the response of individual flies to changing temperatures. Individual flies are placed in the arena and exposed to pre-programmed temperature challenges, such as uniform gradual increases in temperature to determine reaction norms or spatially distributed temperatures at the same time to determine preferences. Individuals are automatically tracked, allowing the quantification of speed or location preference. This method can be used to rapidly quantify the response over a large range of temperatures to determine temperature performance curves in Drosophila or other insects of similar size. In addition, it can be used for genetic studies to quantify temperature preferences and reactions of mutants or wild-type flies. This method can help uncover the basis of thermal speciation and adaptation, as well as the neural mechanisms behind temperature processing.
Temperature is a constant environmental factor that affects how organisms function and behave1. Differences in latitude and altitude lead to differences in the type of climates organism are exposed to, which results in evolutionary selection for their responses to temperature2,3. Organisms respond to different temperatures through morphological, physiological, and behavioral adaptations that maximize performance under their particular environments4. For instance, in the fruit fly Drosophila melanogaster, populations from different regions have different temperature preferences, body sizes, developmental times, longevity, fecundity, and walking performance at different temperatures2,5,6,7. The diversity observed between flies of different origins is explained in part by genetic variation and plastic gene expression8,9. Similarly, Drosophila species from different areas distribute differently among temperature gradients and show differences in resistance to extreme heat and cold tests10,11,12.
Drosophila has also recently become the model of choice to understand the genetic and neural basis of temperature perception13,14,15,16,17. Broadly, adult flies perceive temperature through cold and hot peripheral temperature sensors in the antennae and through temperature sensors in the brain13,14,15,16,17,18,19,20. The periphery receptors for hot temperatures express Gr28b.d16 or Pyrexia21, while the periphery cold receptors are characterized by Brivido14. In the brain, temperature is processed by neurons expressing TrpA115. Behavioral studies on mutants of these pathways are improving our understanding of how temperature is processed and give insights into mechanisms that vary among populations of Drosophila from different regions.
Here we describe a temperature-controlled arena that produces fast and precise temperature changes. Investigators can pre-program these changes, which allows for standardized and repeatable temperature manipulations without human intervention. Flies are recorded and tracked with specialized software to determine their position and speed at different phases of an experiment. The main measurement presented in this protocol is the walking speed at different temperatures, because it is an ecologically relevant index of physiological performance that can identify individual thermal adaptability5. Together with temperature receptor mutants, this technique can help reveal the mechanisms of thermal adaptation at cellular and biochemical levels.
1. Preparation of Fly Food Medium
2. Preparation of Flies
3. Frame of Lights
4. Temperature-Controlled Arena
5. Temperature Behavioral Experiments
6. Video Tracking and Data Analysis
The temperature-controlled arena (Figure 1A) consists of three copper tiles whose temperature can be individually controlled through a programmable circuit. Each copper tile possesses a temperature sensor that gives feedback to the programmable circuit. The circuit activates a power supply to increase the temperature of each tile. Passive thermoelectric elements act as constant heating elements to maintain the desired temperature, while a heat sink cooled by ...
Here we have presented an automated temperature-controlled arena (Figure 1) that produces precise temperature changes in time and space. This method allows exposure of individual Drosophila not only to pre-programmed gradual increases of temperature (Figure 2 and Figure 3), but also to dynamic temperature challenges in which each tile of the fly arena was heated independently to a different temperature (
The authors declare that they have no competing financial interests.
This work was supported in part by a scholarship from the Behavioural and Cognitive Neuroscience Program of the University of Groningen and a graduate scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACyT) from Mexico, granted to Andrea Soto-Padilla, and a grant from the John Templeton Foundation for the study of time awarded to Hedderik van Rijn and Jean-Christophe Billeter. We are also thankful to Peter Gerrit Bosma for his participation in developing the FlySteps tracker.
Scripts TemperaturePhases,FlySteps, and FlyStepAnalysis can be found as supplementary information and in the following temporary and publicly available link:
https://dataverse.nl/privateurl.xhtml?token=c70159ad-4d92-443d-8946-974140d2cb78
Name | Company | Catalog Number | Comments |
Arduino Due | Arduino | A000062 | Software RUG |
Electronics Board | Ruijsink Dynamic Engineering | FF-Main-02-2014 | |
Power supply Boost | XP-Power 48. V 65 W | ECS65US48 | Set to 53 Volt |
Power supply Tile Heating | XP-Power 15. V 80 W | VFT80US15 | |
Power supply Cooling | XP-Power 15. V 130 W | ECS130U515 | |
Peltier elements | Marlow Industries | RC12-4 | 2 Elements, controlled DC feed |
Heat sink | Fisher Technik | LA 9/150-230V | Decoupled for vibration |
Temperature sensors | Measurement Specialties | MCD_10K3MCD1 | Micro Thermistor Probe |
Copper block/tiles | Ruijsink Dynamic Engineering | FF-CB-01-2014 | |
Auminum ring | Ruijsink Dynamic Engineering | FF-RoF-02-2015 | |
Tesa 4104 white tape 25 x 66 mm | RS Components | 111-2300 | White conductive tape |
Red LEDs | Lucky Ligt | ll-583vc2c-v1-4da | Wavelength between 625 nm, 20 mAmp and 6 V |
Warm white LED strip | Ledstripkoning | HQ-3528-SMD | 60 LEDs per meter |
Switch Power Supply | Generic | T-36-12 | |
Logitech c920 | Logitech Europe S.A | PN960-001055 | |
QuickTime Player | Apple Computer | Recording program | |
Tracking analysis software | R | Packages: pacman | |
Tracking analysis software | MATLAB | ||
Thermal Imaging | FLIR T400sc | ||
Graphs and Statisticts Software | Graph Pad Prism | ||
Sigmacote | Sigma-Aldrich | SL2-100ML | Siliconising agent |
Fly rearing bottles | Flystuff | 32-130 | 6oz Drosophila stock bottle |
Flypad | Flystuff | 59-114 | |
Fly rearing vials | Dominique Dutscher | 789008 | Drosophila tubes narrow 25x95 mm |
Incubator | Sanyo | MIR-154 | |
Magnetic hot plate | Heidolph | 505-20000-00 | MR Hei-Standard |
Agar | Caldic Ingredients B.V. | 010001.26.0 | |
Glucose | Gezond&wel | 1019155 | Dextrose/Druivensuiker |
Sucrose | Van Gilse | Granulated sugar | |
Cornmeal | Flystuff | 62-100 | |
Wheat germ | Gezond&wel | 1017683 | |
Soy flour | Flystuff | 62-115 | |
Molasses | Flystuff | 62-117 | |
Active dry yeast | Red Star | ||
Tegosept | Flystuff | 20-258 | 100% |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved