A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Skeletal muscle differentiation is a highly dynamic process, which particularly relies on nuclear positioning. Here, we describe a method to track nuclei movements by live cell imaging during myoblast differentiation and myotube formation and to perform a quantitative characterization of nuclei dynamics by extracting information from automatic tracking.
Nuclear positioning within cells is important for multiple cellular processes in development and regeneration. The most intriguing example of nuclear positioning occurs during skeletal muscle differentiation. Muscle fibers (myofibers) are multinucleated cells formed by the fusion of muscle precursor cells (myoblasts) derived from muscle stem cells (satellite cells) that undergo proliferation and differentiation. Correct nuclear positioning within myofibers is required for the proper muscle regeneration and function. The common procedure to assess myoblast differentiation and myofiber formation relies on fixed cells analyzed by immunofluorescence, which impedes the study of nuclear movement and cell behavior over time. Here, we describe a method for the analysis of myoblast differentiation and myofiber formation by live cell imaging. We provide a software for automated nuclear tracking to obtain a high-throughput quantitative characterization of nuclear dynamics and myoblast behavior (i.e., the trajectory) during differentiation and fusion.
Skeletal muscle is the largest tissue in the human body, totaling 35%-40% of body mass1. Satellite cells are muscle stem cells, anatomically characterized by their position (juxtaposed to the plasma membrane, underneath the basal lamina of muscle fibers), that give rise to proliferating myoblasts (myogenic progenitor cells), which eventually differentiate and integrate into existing myofibers and/or fuse to form new myofibers2,3,4. Their discovery and the progress in the study of their biology has led to significant insights into muscle development and regeneration.
Protocols to isolate and differentiate myoblasts into myotubes have been developed many years ago and are still widely used to study skeletal muscle differentiation5,6,7. However, most of these methods represent static procedures that rely on the analysis of fixed cells and, consequently, do not allow scientists to fully explore highly dynamic processes, such as myoblast fusion and myofiber maturation. The most striking example is nuclear positioning, which is tightly regulated, with nuclei initially in the center of the myofiber and, then, located at the periphery after myofiber maturation8,9. Live imaging is the most appropriate technique to obtain further insights into such a peculiar phenomenon.
Here, we describe a method that enables scientists to record myoblast differentiation and myotube formation by time-lapse microscopy and to perform quantitative analyses from the automatic tracking of myoblast nuclei. This method provides a high-throughput quantitative characterization of nuclear dynamics and myoblast behavior during differentiation and fusion. The protocol is divided into four different parts, namely (1) the collection of muscles from the hindlimbs of mice, (2) the isolation of primary myoblasts that consists in mechanical and enzymatic digestion, (3) myoblast proliferation and differentiation, and (4) live imaging to track nuclei within the first 16 h of myoblast differentiation.
In the following procedure, myoblasts are isolated from H2B-GFP mice and treated with 1 µg/mL of doxycycline to induce H2B-GFP expression, as previously described10. Alternatively, it is possible to isolate the myoblasts from other transgenic mice that express a fluorescent protein in the nucleus or to transfect the cells isolated from wild-type mice to express a fluorescent protein in the nucleus, as described by Pimentel et al.9.
All procedures involving animal subjects were approved by the San Raffaele Institutional Animal Care and Use Committee.
1. Dissection of mouse hindlimb muscles
2. Isolation of primary myoblasts
NOTE: All the procedures for cell culture are done in sterile conditions.
3. Myoblast proliferation and differentiation assays
NOTE: When myoblast density is high, some cells initiate elongation, and then, it is necessary to split the cells. Generally, it is possible to split cells 2x–3x without affecting their phenotype.
4. Live-imaging of myoblast differentiation and nuclear tracking
To automatically follow nuclear movement during myoblast differentiation in live imaging, the nuclei should preferentially be fluorescently labeled. It is important to note that using DNA-intercalating molecules is not feasible because these molecules interfere with the proliferation and differentiation of primary myoblasts13. As an example, proliferation and differentiation have been analyzed in primary myoblasts cultured with or without Hoechst (
Muscle fibers (myofibers) are multinucleated cells that are formed by the fusion of muscle precursors cells (myoblasts) derived from muscle stem cells (satellite cells) that undergo proliferation and differentiation2,3,4. To assess myoblast differentiation, the common procedure consists of culturing myoblasts in differentiating medium and fixing the cells at different time points to perform immunofluorescence staining for MyHC, ...
The authors have nothing to disclose.
This work was supported by the AFM-Telethon to E.V. (#21545) and by the Ospedale San Raffaele (OSR) Seed Grant to S.Z. (ZAMBRA5X1000). Dr. Jean-Yves Tinevez from the Image Analysis Hub of the Institut Pasteur is acknowledged for publicly sharing his "Simple Tracker" MATLAB routines.
Name | Company | Catalog Number | Comments |
chicken embryos extract | Seralab | CE-650-J | |
collagenase | Sigma | C9263-1G | 125units/mg |
collagen from calf skin | Sigma | C8919 | |
dispase | Gibco | 17105-041 | 1.78 units/mg |
doxyciclin | Sigma | D1515 | |
DMEM | Sigma | D5671 | |
fetal bovine serum | Life technologies | 10270106 | |
gentamicin | Sigma | G1397 | |
Horse serum | Invitrogen | 16050-098 | |
Hoechst | life technologies | 33342 | |
IMDM | Sigma | I3390 | |
L-glutamine | Sigma | G7513 | |
Matrigel | Corning | 356231 | |
penicillin-streptomycin | Sigma | P0781 | |
red blood cells lysis medium | Biolegend | 420301 | |
Digestion medium | |||
collagenase | 40 mg | ||
dispase | 70 mg | ||
PBS | 20 ml | ||
filtered 0.22um | |||
Blocking medium | |||
DMEM | |||
Fetal bovine serum | 10% | ||
L-glutammine | 1% | ||
penicillin-streptomycin | 1% | ||
gentamicin | 1 ‰ | ||
filtered 0.22um | |||
proliferation medium | |||
IMDM | |||
Fetal bovine serum | 20% | ||
L-glutammine | 1% | ||
penicillin-streptomycin | 1% | ||
gentamicin | 1 ‰ | ||
chichen embryo extract | 3% | ||
filtered 0.22um | |||
differentiation medium | |||
IMDM | |||
Horse serum | 2% | ||
L-glutammine | 1% | ||
penicillin-streptomycin | 1% | ||
gentamicin | 1 ‰ | ||
chichen embryo extract | 1% | ||
filtered 0.22um |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved