Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol uses a probe-based real-time polymerase chain reaction (PCR), a sulforhodamine B (SRB) assay, 3’ untranslated regions (3’ UTR) cloning, and a luciferase assay to verify the target genes of a miRNA of interest and to understand the functions of miRNAs.

Abstract

MicroRNAs (miRNAs) are small regulatory RNAs which are recognized to modulate numerous intracellular signaling pathways in several diseases including cancers. These small regulatory RNAs mainly interact with the 3’ untranslated regions (3’ UTR) of their target messenger RNAs (mRNAs) ultimately resulting in the inhibition of decoding processes of mRNAs and the augmentation of target mRNA degradations. Based on the expression levels and intracellular functions, miRNAs are able to serve as regulatory factors of oncogenic and tumor-suppressive mRNAs. Identification of bona fide target genes of a miRNA among hundreds or even thousands of computationally predicted targets is a crucial step to discern the roles and basic molecular mechanisms of a miRNA of interest. Various miRNA target prediction programs are available to search possible miRNA-mRNA interactions. However, the most challenging question is how to validate direct target genes of a miRNA of interest. This protocol describes a reproducible strategy of key methods on how to identify miRNA targets related to the function of a miRNA. This protocol presents a practical guide on step-by-step procedures to uncover miRNA levels, functions, and related target mRNAs using the probe-based real-time polymerase chain reaction (PCR), sulforhodamine B (SRB) assay following a miRNA mimic transfection, dose-response curve generation, and luciferase assay along with the cloning of 3’ UTR of a gene, which is necessary for proper understanding of the roles of individual miRNAs.

Introduction

MicroRNAs (miRNAs) are the small regulatory RNAs that mainly modulate the process of translation and degradation of messenger RNAs (mRNAs) by reacting to the 3’ untranslated regions (3’ UTR) in bona fide target genes1. Expression of miRNAs can be regulated by transcriptional and post-transcriptional mechanisms. The imbalance of such regulatory mechanisms brings uncontrolled and distinctive miRNAs expression levels in numerous diseases including cancers2. A single miRNA can have multiple interactions with diverse mRNAs. Correspondingly, an individual mRNA can be controlled by various miRNAs. Therefore, intrace....

Protocol

1. Mature MicroRNA (miRNA) Expression Analysis

  1. Mature miRNA complementary DNA (cDNA) synthesis
    1. Add 254 ng of total RNA and 4.5 µL of deoxyribonuclease I (DNase I) mixtures, and then add ultrapure water into PCR strip-tubes to make up to 18 µL (Figure 2A). Prepare the reaction for each total RNA sample purified from several cell lines using enough amount of DNase I mixtures based on the total number of reactions.
      NOTE:

Representative Results

Successful and accurate confirmation of miRNA levels is important for the interpretation of data by which the classification of miRNAs is possible based on the anticipated roles of miRNAs in the development and progression of a disease. The levels of miRNA-107 and miRNA-301 were measured in three pancreas cell lines using the probe-based quantitative PCR. The synthesis of cDNAs of both a specific miRNA and a reference gene in the same reaction can increase the reproducibility of data. PANC-1 and CAPAN-1 are human pancrea.......

Discussion

Strategies for the determination of bona fide miRNA targets with the functions of a miRNA of interest are indispensable for the understanding of multiple roles of miRNAs. Identification of miRNA target genes can be a guideline for interpreting the cell signaling events modulated by miRNAs in a cell. An unveiling of functionally important target genes of miRNAs can provide the fundamental knowledge to develop a miRNA-based therapy in cancer.

Several methods such as microarrays, small RNA librar.......

Acknowledgements

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A3B03035662); and Hallym University Research Fund, 2017 (HRF-201703-003).

....

Materials

NameCompanyCatalog NumberComments
15 mL conical tubeSPL Life Sciences50015
24-well plateThermo Scientific142475
50 mL conical tubeSPL Life Sciences50050
6-well plateFalcon353046
6X DNA loading dyeReal Biotech CorporationRD0061 mL
8-cap stripApplied BiosystemsN8010535For cDNA synthesis
8-tube stripApplied BiosystemsN8010580For cDNA synthesis
96-well plateFalcon353072
Acetic acidSigmaA6283-1L1 L
Agarose ABio BasicD0012500 g
Alkaline phosphataseNew England BiolabsM0290S10,000 U/mL
AmpicillinBio basic Canada IncAB002825 g
AriaMx 96 tube stripsAgilent Technologies401493For real time PCR
AriaMx real-time PCR systemAgilent TechnologiesG8830AqPCR amplification, detection, and data analysis
AsiSINew England BiolabsR063010,000 units/mL
CAPAN-1 cellsATCCHTB-79
Cell culture hoodLabtechModel: LCB-1203B-A2
Counting chambers with V-slashPaul Marienfeld650010Cells counter
CutSmart bufferNew England BiolabsB7204S10X concentration
DMEMGibco11965-092500 mL
DNA gel extraction kitBionicsDN30200200 prep
DNA ladderNIPPON Genetics EUROPEMWD11 Kb ladder
DNase IInvitrogen18068015100 units
Dual-luciferase reporter assay systemPromegaE1910100 assays
Fetal bovine serumGibco26140-079500 mL
HIT competent cellsReal Biotech Corporation(RBC)RH617Competent cells
HPNE cellsATCCCRL-4023
LB agar brothBio BasicSD7003250 g
Lipofectamine 2000Invitrogen11668-0270.75 mL
Lipofectamine RNAiMaxInvitrogen13778-0750.75 mL
LuminometerPromegaModel: E5311
Microcentrifuge tubeEppendorf22431021
Microplate readerTECANInfinite F50
miRNA control mimicAmbion44640585 nmole
miRNA-107 mimicAmbion44640665 nmole
miRNeasy Mini KitQiagen21700450 prep
Mupid-2plus (electrophoresis system)TaKaRaModel: AD110
NotINew England BiolabsR318920,000 units/mL
Oligo explorer programGeneLinkFor primer design
Optical tube strip caps (8X Strip)Agilent Technologies401425For real time PCR
Opti-MEMGibco31985-070500 Ml
PANC-1 cellsATCCCRL-1469
Penicillin/streptomycinGibco15140-122100 mL
Phosphate buffer salineGibco140401171000 mL
Plasmid DNA miniprep S& V kitBionicsDN10200200 prep
PrimeSTAR GXL DNA polymeraseTaKaRaR050A250 units
ShakerTECANShaking platform
Shaking incubatorLabtechModel: LSI-3016A
Sigmaplot 14 softwareSystat Software IncFor dose-response curve generation
Sulforhodamine B powderSigmaS1402-5G5 g
SYBR green master mixSmobioTQ12001805401-3Binding fluorescent dye for dsDNA
T4 DNA ligaseTaKaRa2011A25,000 U
TaqMan master mixApplied Biosystems4324018200 reactions, no AmpErase UNG
TaqMan microRNA assay (hsa-miR-107)Applied Biosystems4427975Assay ID: 000443 (50RT, 150 PCR rxns)
TaqMan microRNA assay (hsa-miR-301)Applied Biosystems4427975Assay ID: 000528 (50RT, 150 PCR rxns)
TaqMan miR RT kitApplied Biosystems43665971000 reactions
Thermo CO2 incubator (BB15)ThermoFisher Scientific37 °C and 5% CO2 incubation
Trichloroacetic acidSigma91228-100G100 g
Trizma baseSigmaT4661-100G100 g
Ultrapure waterInvitrogen10977-015500 mL
Veriti 96 well thermal cyclerApplied BiosystemsFor amplification of DNA (or cDNA)
XhoINew England BiolabsR014620,000 units/mL

References

  1. He, L., Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics. 5 (7), 522-531 (2004).
  2. Park, J. K., Doseff, A. I., Schmittgen, T. D. MicroRNAs Targeting Caspase-3 and -7 in PANC-1 Cells.

Explore More Articles

MicroRNAMicroRNA TargetIn Vitro ProtocolTumor CellsCell Viability AssayTransfectionMicroRNA MimicMicroRNA 107

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved