Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This report describes comprehensive methods for preparing frozen mouse retina sections for immunohistochemistry (IHC). Methods described include dissection of the ocular posterior cup, paraformaldehyde fixation, embedding in Optimal Cutting Temperature (OCT) media and tissue orientation, sectioning and immunostaining.

Abstract

Preparation of high-quality mouse eye sections for immunohistochemistry (IHC) is critical for assessing the retinal structure and function and for determining the mechanisms underlying retinal diseases. Maintaining structural integrity throughout the tissue preparation is vital for obtaining reproducible retinal IHC data but can be challenging due to the fragility and complexity of retinal cytoarchitecture. Strong fixatives like 10% formalin or Bouin's solution optimally preserve the retinal structure, they often impede IHC analysis by enhancing the background fluorescence and/or diminishing antibody-epitope interactions, a process known as epitope masking. Milder fixatives, on the other hand, like 4% paraformaldehyde, reduces background fluorescence and epitope-masking, meticulous dissection techniques must be utilized to preserve the retinal structure. In this article, we present a comprehensive method to prepare mouse ocular posterior cups for IHC that is sufficient to preserve most antibody-epitope interactions without loss of retinal structural integrity. We include representative IHC with antibodies to various retinal cell type markers to illustrate tissue preservation and orientation under optimal and sub-optimal conditions. Our goal is to optimize IHC studies of the retina by providing a complete protocol from ocular posterior cup dissection to IHC.

Introduction

Immunohistochemistry (IHC) is a powerful technique for localizing specific proteins and cellular structures in tissues in situ1,2,3. Inappropriate fixation methods and sub-optimal sectioning of complex tissues can disrupt tissue structure, generate high background staining or diminish antibody-epitope interactions, resulting in staining artifacts and consequent misinterpretation of IHC data4. As the vertebrate retina is a complex and highly organized neural organ composed of strata of interconnected photoreceptors, interneurons and ganglion cells, it i....

Protocol

All methods described here were carried out in strict accordance with the recommendations in the National Institutes of Health Guide for the Care and Use of Laboratory Animals provided by the Institute of Laboratory Animal Resources and were approved by the Institutional Animal Care and Use Committee of the University of Pennsylvania.

All tools and equipment for the methods are shown in Figure 1 and listed in the Table of Materials.

Representative Results

To illustrate how these protocols, ensure optimal retinal preservation for IHC, we probed retinal sections from P28 WT mice (C57BL/6N) with antibodies to rhodopsin (a photoreceptor marker)8, glutamic acid decarboxylase 65 (Gad65, an amacrine cell marker)9, glutamine synthetase (GS, a Müller cell marker)10, and calbindin (a horizontal cell marker)11 (Figure 4

Discussion

Mouse retina dissection is a delicate process due to the small size and shape of mouse eyes and the fragility of retinal tissue. Even though performing high-quality dissection is a matter of practice, having a detailed protocol, providing efficient methods and tips is a necessity to obtain retinal sections and IHC. In addition to the protocols described here, there are several tips that allow for consistent high-quality retinal sections that are suitable for reproducible IHC.

Prior to commenci.......

Acknowledgements

This work was supported by funds from NIH (RO1-GMO97327) and the University Research Foundation (UPenn). We especially thank Svetlana Savina for her help in developing the immunohistochemistry protocol, Gordon Ruthel (University of Pennsylvania) and the Penn Vet Imaging Core for assistance with microscopy and Leslie King, Ph.D. for critical reading this manuscript.

....

Materials

NameCompanyCatalog NumberComments
6qt. Stainless Steel Beaker (185 x 218mm)Gilson #MA-48For liquid nitrogen (Figure 1E)
Aluminum foil 
Cauterizer Bovie#AA01To mark eye orientation (Figure 1A)
Curved forceps, Dumont #5/45 tweezers, 45-degrees bent Electron Microscopy Sciences#72703-DFor mouse eye enucleation and maintenance (Figure 1A)
Curved scissors, Vannas Spring Scissors - 2.5mm Cutting Edge Fine Science Tools #15002-08To circumferentially cut the cornea (Figure 1B)
Dental wax-coated 35mm dissection dishFor eye cup dissection (Figure 1C)
Dissecting microscope Leica, Houston, USA MZ12.5 High-performance stereomicroscope
Micro Knives - Plastic Handle Fine Science Tools #10315-12To make a small incision at the burn mark (Figure 1A)
Pink dental wax Electron Microscopy Sciences #72660For coating dissection dish
Slide Rack and CoverplateTed Pella#36107For retinal IHC (Figure 1G)
Stainless Steel Beaker (89 x 114mm)Gilson #MA-40For isopentane bath (Figure 1E)
Styrofoam boxFor insulated cooler
Thin forceps Dumont #5  Fine Science Tools #11254-20To remove the cornea and extract the lens (Figure 1B)
Tissue-Tek cryomold  (10mm x 10mm x 5mm)Electron Miscroscopy Sciences #62534-10Mold for OCT embedding
Buffers and ReagentsCompanyCatalog NumberComments
Blocking solution2% Normal Horse Serum, 1.5% Cold Fish skin Gelatin (at 40-50% in H2O, cat #G7765), 5% bovine serum albumin (cat #AK1391-0100) in permeabilization buffer.  
Gelvatol (anti-fading mounting media)Under the fume hood, dissolve 0.337g DABCO (Sigma cat #D2522-25G) in 10mL Fluoromount G (Fisher cat #OB100-01).  Adjust to pH 8-8.5 with 12N HCl (~ 5 drops).  Store in amber drop bottle at 4°C  (8). 
Hoechst 33342 1000x StockThermo Scientific#622491 mg/ml in PBS (1000x). Aliquot and store in dark, at 4°C for up to 1 year or at -20°C for long term storage. Prepare fresh  at 1 ug/mL (1x) 
Isopentane, 99% GFS Chemicals#2961
Liquid Nitrogen
Paraformaldehyde (PFA) in PBSElectron Microscopy Sciences #15710Prepared fresh 4% PFA from 16% PFA stock. Store the remaining 16% PFA at 4°C in the dark. 
Permeabilization solutionPBS + 0.25% Triton-X (AMRESCO cat #0694-1L) + 0.05% NaN3.  Prepare fresh.
Phosphate-buffered saline (PBS)Bioworld #41620015-200.02 g/L KCl, 0.02 g/L KH2PO4, 0.8 g/L NaCl, 0.216 g/L Na2HPO4 , pH 7.4.  Prepared from 10x stock 
Sucrose solutionsFisher Scientific  #S-5-500Dissolve the appropriate amount of sucrose in  37°C PBS (takes ~15 min to dissolve). May be stored for a few days at 4°C. 
Tissue-Tek OCT-compound Sakura #4583
AntibodiesCompanyCatalog NumberComments
anti-calbindinSigma-AldrichC8666To label horinzotal cells 
anti-GAD65ChemiconAB5082To label GABAergic amacrine cells
anti-GSBD Transduction610517To label Müller cells
anti-rhodopsinMilliporeMAB5316To label rods

References

  1. Coons, A. H. Labelled antigens and antibodies. Annual Review of Microbiology. 8, 333-352 (1954).
  2. Coons, A. H. Fluorescent antibodies as histochemical tools. Federation Proceedings. 10 (2), 558-559 (1951).
  3. Coons, A. H., ....

Explore More Articles

Mouse RetinaRetinal DissectionImmunohistochemistryCryo sectionEye EnucleationEye FixationCornea RemovalLens ExtractionRetina IsolationCryo protectionTissue EmbeddingSnap Freezing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved