Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a driving simulation platform and a tactile vibrating toolkit for the investigation of driving-related research. An exemplar experiment exploring the effectiveness of tactile warnings is also presented. 

Abstract

Collision warning system plays a key role in the prevention of driving distractions and drowsy driving. Previous studies have proven the advantages of tactile warnings in reducing driver’s brake response time. At the same time, tactile warnings have been proved effective in take-over request (TOR) for partially autonomous vehicles.

How the performance of tactile warnings can be optimized is an ongoing hot research topic in this field. Thus, the presented low-cost driving simulation software and methods are introduced to attract more researchers to take part in the investigation. The presented protocol has been divided into five sections: 1) participants, 2) driving simulation software configuration, 3) driving simulator preparation, 4) vibrating toolkit configuration and preparation, and 5) conducting the experiment.

In the exemplar study, participants wore the tactile vibrating toolkit and performed an established car-following task using the customized driving simulation software. The front vehicle braked intermittently, and vibrating warnings were delivered whenever the front vehicle was braking. Participants were instructed to respond as quickly as possible to the sudden brakes of the front vehicle. Driving dynamics, such as the brake response time and brake response rate, were recorded by the simulation software for data analysis.

The presented protocol offers insight into the exploration of the effectiveness of tactile warnings on different body locations. In addition to the car-following task that is demonstrated in the exemplar experiment, this protocol also provides options to apply other paradigms to the driving simulation studies by making simple software configuration without any code development. However, it is important to note that due to its affordable price, the driving simulation software and hardware introduced here may not be able to fully compete with other high-fidelity commercial driving simulators. Nevertheless, this protocol can act as an affordable and user-friendly alternative to the general high-fidelity commercial driving simulators.

Introduction

According to the data revealed by the Global Health Estimates in 2016, traffic injury is the eighth cause of global deaths, leading to 1.4 million deaths worldwide1. In the year 2018, 39.2% of the traffic accidents were collisions with motor vehicles in transport, and 7.2% of which were rear-end collisions. A solution to increase vehicle and road safety is the development of an advanced driving assistance system (ADAS) to warn drivers with potential hazards. Data has shown that ADAS can greatly reduce the rate of rear-end collisions, and it is even more effective when equipped with an auto brake system2. In addition, wit....

Protocol

NOTE: All methods described here have been approved by the Institutional Review Board (IRB) of Tsinghua University and informed consent was obtained from all participants.

1. Participants

  1. Conduct a power analysis to calculate the required number of participants for recruitment according to the experimental design to achieve statistical power.
  2. Balance the gender of the participants during recruitment as much as possible.
  3. Ensure that participants have a valid driv.......

Representative Results

The exemplar study reported in this paper conducted the car-following task using the driving simulator and vibrating toolkit, which has also been published previously in an academic journal22. It is noteworthy that the older version of the vibrating toolkit was used when conducting the exemplar study, while a new version of the vibrating toolkit was introduced in the above protocol. The study was a within-subject design experiment with vibrating warning location as the only factor: finger, wr.......

Discussion

The driving simulation platform and vibrating toolkit reasonably mimicked the application of potential wearable vibrotactile devices in real life, providing an effective technique in investigating driving-related research. With the use of this technology, a safe experimental environment with high configurability and affordability is now available for conducting research that is comparable to real-world driving.

There are several steps that require more attention. Firstly, during the .......

Acknowledgements

This project has been sponsored by Beijing Talents Foundation.

....

Materials

NameCompanyCatalog NumberComments
Logitech G29Logitech941-000114Steering wheel and pedals
Projector screens--The projector screen for showing the simulation enivronemnt.
Epson CB-700U Laser WUXGA Education Ultra Short Focus Interactive ProjectorEPSONV11H878520WThe projector model for generating the display of the simlution enivronment.
The Open Racing Car Simulator (TORCS)-NoneDriving simulation software. The original creators are Eric Espié and Christophe Guionneau, and the version used in experiment is modified by Cao, Shi.
Tactile toolkitHao Xing Tech.NoneThis is used to initiate warnings to the participants.
Connecting program (Python)--This is used to connect the TORCS with the tactile toolkit to send the vibrating instruction.
G*powerHeinrich-Heine-Universität DüsseldorfNoneThis software is used to calculate the required number of participants.

References

  1. The top 10 causes of death. World Health Organization Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (2018)
  2. . Insurance Institute for Highway Safety (IIHS) Available from: https://www.iihs.org/news/detail/gm-front-crash-prevention-systems-cut-police-reported-crashes (2018)
  3. Spence, C., Ho, C.

Explore More Articles

Tactile Vibrating ToolkitDriving Simulation PlatformDriving related ResearchIn vehicle Warning SystemSmart Wearable DevicesDriving SafetyUDP Data TransferDriving SimulatorSteering WheelProjector ScreensVibrating ToolkitSkin Sensitivity TestVibrating FrequencyBrake EventsDriving Simulation Experiment

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved