A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol outlines a method to isolate Fibro-adipogenic progenitors (FAPs) and myogenic progenitors (MPs) from rat skeletal muscle. Utilization of the rat in muscle injury models provides increased tissue availability from atrophic muscle for the analysis and a larger repertoire of validated methods to assess muscle strength and gait in free-moving animals.
Fibro-adipogenic Progenitors (FAPs) are resident interstitial cells in skeletal muscle that, together with myogenic progenitors (MPs), play a key role in muscle homeostasis, injury, and repair. Current protocols for FAPs identification and isolation use flow cytometry/fluorescence-activated cell sorting (FACS) and studies evaluating their function in vivo to date have been undertaken exclusively in mice. The larger inherent size of the rat allows for a more comprehensive analysis of FAPs in skeletal muscle injury models, especially in severely atrophic muscle or when investigators require substantial tissue mass to conduct multiple downstream assays. The rat additionally provides a larger selection of muscle functional assays that do not require animal sedation or sacrifice, thus minimizing morbidity and animal use by enabling serial assessments. The flow cytometry/FACS protocols optimized for mice are species specific, notably restricted by the characteristics of commercially available antibodies. They have not been optimized for separating FAPs from rat or highly fibrotic muscle. A flow cytometry/FACS protocol for the identification and isolation of FAPs and MPs from both healthy and denervated rat skeletal muscle was developed, relying on the differential expression of surface markers CD31, CD45, Sca-1, and VCAM-1. As rat-specific, flow cytometry-validated primary antibodies are severely limited, in-house conjugation of the antibody targeting Sca-1 was performed. Using this protocol, successful Sca-1 conjugation was confirmed, and flow cytometric identification of FAPs and MPs was validated by cell culture and immunostaining of FACS-isolated FAPs and MPs. Finally, we report a novel FAPs time-course in a prolonged (14 week) rat denervation model. This method provides the investigators the ability to study FAPs in a novel animal model.
Fibro-adipogenic progenitor cells (FAPs) are a population of resident multipotent progenitor cells in skeletal muscle that play a critical role in muscle homeostasis, repair, and regeneration, and conversely, also mediate pathologic responses to muscle injury. As the name suggests, FAPs were originally identified as a progenitor population with the potential to differentiate into fibroblasts and adipocytes1 and were purported to be the key mediators of fibro-fatty infiltration of skeletal muscle in chronic injury and disease. Further study revealed that FAPs are additionally capable of osteogenesis and chondrogenesis2,3,4. Thus, they are more broadly notated in the literature as mesenchymal or stromal progenitors3,5,6,7,8. In acute skeletal muscle injury, FAPs indirectly aid in regenerative myogenesis by transiently proliferating to provide a favorable environment for activated muscle satellite cells and their downstream myogenic progenitor (MPs) counterparts1,9,10. In parallel with successful regeneration, FAPs undergo apoptosis, returning their numbers to baseline levels1,9,10,11. In contrast, in chronic muscle injury, FAPs override pro-apoptotic signals, which results in their persistence9,10,11 and abnormal muscle repair.
In vivo studies evaluating the cellular and molecular mechanisms by which FAPs mediate muscle responses have utilized murine animal models to date1,7,9,10,11,12,13,14. While genetically engineered mice are powerful tools for use in these analyses, the small size of the animal limits tissue availability for study in long-term localized injury models where muscle atrophy can be profound, such as traumatic denervation. Furthermore, measurement of muscle strength and physical function requires ex vivo or in situ measurements that necessitate termination of the mouse, or in vivo methods that require surgery and/or a general anaesthetic to permit evaluation of muscle contractile performance15,16,17,18,19,20. In rats, well validated and globally utilized muscle functional analyses, in addition to analyses for more complex motor behaviors such as gait analysis (e.g., Sciatic Function Index, CatWalk analysis) exist and are performed in awake and spontaneously moving animals21,22,23,24. This additionally optimizes the principles of minimal morbidity in animal experimentation, and numbers of research animals used. The rat thereby provides the FAPs investigator the added flexibility of greater injured muscle volume for protein and cellular analyses and the ability to undertake serial assessments of muscle complex static and dynamic functional activity and behaviors, in the alert animal.
FAPs have primarily been identified and isolated from whole muscle samples using flow cytometry and Fluorescence-activated cell sorting (FACS) respectively. These are laser-based assays that are able to identify multiple specific cell populations based on characteristic features such as size, granularity, and a specific combination of cell surface or intracellular markers25. This is highly advantageous in the study of an organ system such as skeletal muscle, as homeostasis and regeneration are complex, multifactorial processes coordinated by a plethora of cell types. A seminal study identified FAPs, as well as MPs, using flow cytometric methods in mouse skeletal muscle1. They demonstrated that FAPs are mesenchymal in nature, as they lacked surface antigens specific to cells from endothelial (CD31), hematopoietic (CD45), or myogenic (Integrin-α7 [ITGA7]) origins, but expressed the mesenchymal stem cell marker Sca-1 (Stem cell antigen 1)1 and differentiated into fibrogenic and adipogenic cells in culture. Other studies demonstrated successful isolation of mesenchymal progenitors in muscle based on the expression of an alternative stem cell marker, platelet-derived growth factor receptor alpha (PDGFRα)2,7,8 and further analysis revealed these likely to be the same cell population as FAPs3. FAPs are now commonly identified in flow cytometry using either Sca-1 or PDGFRα as a positive selection marker1,9,10,11,12,13,14,26,27,28,29,30,31. The use of PDGFRα is preferential for human tissue however, as a direct human homologue of murine Sca-1 has yet to be identified32. In addition, other cell surface proteins have been reported as markers of MPs (e.g., VCAM-1), providing a potential alternative to ITGA7 as an indicator of cells of myogenic lineage during FAPs isolation33.
While flow cytometry/FACS is a powerful methodology for studying the role and pathogenic potential of FAPs in skeletal muscle1,9,10,11,13,29, it is limited technically by the specificity and optimization of its required reagents. Since flow cytometric identification and isolation of FAPs has been developed and conducted in mouse animal models1,9,10,11,29, this poses challenges for researchers who wish to study FAPs in other model organisms. Many factors - such as optimal tissue size to be processed, as well as reagent and/or antibody specificity and availability - differ depending on the species used.
In addition to the technical barriers to studying FAPs in a novel animal model, they have largely been studied in an acute, toxic setting - usually via intramuscular chemical injection or cardiotoxin. Evaluation of the long-term dynamics of FAPs is limited primarily to assessment in Duchenne's muscular dystrophy, using the mdx mouse model9,10,11, and models of combination muscle injury such as massive rotator cuff tear where concurrent tendon transection and denervation is performed on shoulder musculature26,27,28. The response of FAPs to the sole insult of chronic traumatic denervation, a common occurrence in work-place accidents in heavy industry, agriculture, and in birth traumas (brachial plexus injury)34,35,36,37 with significant morbidity, has not been as well characterized, often limited to a short-term time frame11,38.
We describe a method for identifying and isolating FAPs and MPs from healthy as well as severely atrophic and fibrotic skeletal muscle in the rat. First, identification of CD31-/CD45-/Sca-1+/VCAM-1- FAPs and CD31-/CD45-/Sca-1-/VCAM-1+ MPs using a tissue digestion and flow cytometry staining protocol is demonstrated and subsequent validation of our findings is performed through culture and immunocytochemical staining of FACS-isolated cells. Using this method, we also report a novel FAPs time-course in a long-term isolated denervation injury model in the rat.
Investigators conducting this protocol must receive permission from their local animal ethics board/care committee. All animal work was approved by the St. Michael's Hospital Unity Health Toronto Animal Care Committee (ACC #918) and was conducted in accordance with the guidelines set forth by the Canadian Council on Animal Care (CCAC). A schematic of the flow cytometry protocol is shown in Figure 1. If the downstream application is FACS and subsequent cell culture, all steps should be completed with proper aseptic technique.
1. Muscle harvesting
2. Muscle digestion
3. Generation of single cell suspension
4. Antibody staining for flow cytometry
NOTE: The Sca-1 antibody must be conjugated to APC prior to flow cytometry/FACS experiments, as per the manufacturer's instructions. Performance must be validated for each batch of conjugates (Figure 2). Final conjugations can be stored in 20 µL aliquots at -20 °C and are stable for three weeks. Refer to the Supplementary File for full conjugation protocol.
5. Flow cytometry and fluorescence-activated cell sorting (FACS)
6. Immunocytochemistry of cultured FAPs and MPs
7. Oil Red O (ORO) staining of cultured FAPs and MPs
8. Tissue staining of contralateral and denervated rat gastrocnemius sections
Identifying FAPs and MPs via flow cytometry using a novel antibody panel including Sca-1 and VCAM-1
The gating strategy for identifying FAPs in rat muscle is based upon flow cytometry protocols in the mouse29, which gate on CD31 (endothelial) and CD45 (hematopoietic) positive cells (termed the lineage [Lin]) and examines the fluorescent profile of FAPs marker Sca-1 and MPs marker ITGA7 from the linage-negative (Lin-) populat...
An optimized, validated FAPs isolation protocol for rat muscle is essential for researchers who wish to study injury models that are not feasible in the mouse for biologic or technical reasons. For example, mice are not an optimal animal model in which to study chronic local, or neurodegenerative injuries such as long-term denervation. Biologically, the short lifespan and rapid aging of mice make it difficult to accurately delineate the muscle sequalae due to denervation from the confounding factor of aging. From a techn...
The authors have no conflicts to disclose.
We would like to thank the Flow cytometry Core Facilities at the University of Ottawa and the Keenan Research Centre for Biomedical Sciences (KRC), St Michaels Hospital Unity Health Toronto for their expertise and guidance in optimization of the flow cytometry/FACS protocol presented in this manuscript. This work was funded by Medicine by Design New Ideas 2018 Fund (MbDNI-2018-01) to JB.
Name | Company | Catalog Number | Comments |
5 mL Polypropylene Round-Bottom Tube | Falcon | 352063 | |
5 mL Polystyrene Round-Bottom Tube with Cell-Strainer Cap | Falcon | 352235 | |
10 cm cell culture dishes | Sarstedt | 83.3902 | |
12-well cell culture plate | ThermoFisher | 130185 | |
12 mm glass coverslips, No.2 | VWR | 89015-724 | |
10 mL Syringe | Beckton Dickenson | 302995 | |
15 mL centrifuge tubes | FroggaBio | 91014 | |
20 gauge needle | Beckton Dickenson | 305176 | |
25mL Serological pipette | Sarstedt | 86.1685.001 | |
40µm cell strainer | Fisher Scientific | 22363547 | |
50mL centrifuge tubes | FroggaBio | TB50 | |
AbC Total Antibody Compensation Beads | ThermoFisher | A10497 | |
Ammonium Chloride, Reagent Grade | Bioshop | AMC303.500 | |
APC Conjugation Kit, 50-100µg | Biotium | 92307 | |
Aquatex Aqueous Mounting Medium | Merck | 108562 | |
Biolaminin 411 LN | Biolamina | LN411 | |
Bovine Serum Albumin (BSA) | Bioshop | ALB001 | |
Calcium Chloride | Bioshop | CCL444.500 | |
Collagenase Type II | Gibco | 17101015 | |
CountBright Plus Absolute Counting Beads | ThermoFisher | C36995 | |
Dexamethasone | Millipore Sigma | D4902 | |
Dispase | Gibco | 17105041 | |
Dulbecco’s Modified Eagle Medium (DMEM) (1X) | Gibco | 11995-065 | (+)4.5 g/L D-Glucose (+)L-Glutamine (+)110 mg/L Sodium Pyruvate |
EDTA | FisherScientific | S311 | |
FACSClean Solution | Beckton Dickenson | 340345 | |
FACSDiva Software | Beckton Dickenson | -- | |
FACSRinse Solution | Beckton Dickenson | 340346 | |
Fetal Bovine Serum | Sigma | F1051 | |
Flow Cytometry Sheath Fluid | Beckton Dickenson | 342003 | |
FlowJo Software | Beckton Dickenson | -- | |
Fluorescent Mounting Medium | Dako | S302380-2 | |
Goat anti-mouse Alexa Fluor 555 secondary antibody | Invitrogen | A21424 | |
Goat anti-rabbit Alexa Fluor 488 secondary antibody | Invitrogen | A11008 | |
Goat anti-rabbit Alexa Fluor 555 secondary antibody | Invitrogen | A21429 | |
Goat Serum | Gibco | 16210-064 | |
Ham's F10 Media | ThermoFisher | 11550043 | (+) Phenol Red (+) L-Glutamine (-) HEPES |
Hank’s Balanced Salt Solution (HBSS) (1X) | Multicell | 311-513-CL | |
Heat Inactivated Horse Serum | Gibco | 26050-088 | |
Hemocytometer | Reichert | N/A | |
HEPES, minimum 99.5% titration | Sigma | H3375 | |
Horse Serum | ThermoFisher | 16050130 | |
Human Transforming Growth Factor β1 (hTGF-β1) | Cell Signaling | 8915LF | |
Humulin R | Lilly | HI0210 | |
IBMX | Millipore Sigma | I5879 | Also known as 3-Isobutyl-1-methylxanthine |
Isopropanol | Sigma | I9516 | Also known as 2-propanol |
Lewis Rat, Female | Charles River Kingston | 004 (Strain Code) | 200-250 grams used |
LSRFortessa X-20 Benchtop Cytometer | Beckton Dickenson | -- | |
Microcentrifuge | Eppendorf | EP-5417R | |
MoFlo XDP Cell Sorter | Beckman Coulter | -- | |
Mouse Anti-CD31::FITC Antibody | Abcam | ab33858 | Clone TLD-3A12 |
Mouse Anti-CD45::FITC Antibody | Biolegend | 202205 | Clone OX-1 |
Mouse Anti-CD106::PE Antibody | Biolegend | 200403 | Also known as VCAM-1 |
Mouse Anti-MHC Antibody | Developmental Studies Hybridoma Bank (DSHB) | N/A | Also known as MF20 |
Mouse Anti-Pax7 Antibody | Developmental Studies Hybridoma Bank (DSHB) | N/A | |
Neutral Buffered Formalin, 10 % | Sigma | HT501128 | |
Oil Red O | Millipore Sigma | O0625 | |
PE-Cy7 Conjugation Kit | Abcam | ab102903 | |
Penicillin-Streptomycin | Sigma | P4333 | |
Phosphate Buffered Saline, pH 7.4 (1X) | Gibco | 10010-023 | (-)Calcium Chloride (-)Magnesium Chloride |
Potassium Bicarbonate, Reagent Grade | Bioshop | PBC401.250 | |
Rabbit Anti-Fibroblast Specific Protein 1 (FSP-1) Antibody | Invitrogen | MA5-32347 | FSP-1 also known as S100A4 |
Rabbit Anti-Integrin-a7 Antibody | Abcam | ab203254 | |
Rabbit Anti-Laminin Antibody | Sigma | L9393 | |
Rabbit Anti-Perilipin-1 Antibody | Abcam | ab3526 | |
Rabbit Anti-Sca-1 Antibody | Millipore Sigma | AB4336 | |
Rabbit Recombinant Anti-Collagen Type I Antibody | Abcam | ab260043 | Also known as Col1a1 |
Rabbit Recombinant Anti-PDGFR Alpha Antibody | Abcam | ab203491 | |
Recombinant Human FGF-basic | Gibco | PHG0266 | |
Sodium Azide | Sigma | S2002 | |
Triton-X-100 | Fisher Scientific | BP151 | |
Troglitazone | Millipore Sigma | T2573 | |
Tween-20 | Bioshop | TWN510 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved