A subscription to JoVE is required to view this content. Sign in or start your free trial.
Co-translational insertion into pre-formed nanodiscs makes it possible to study cell-free synthesized membrane proteins in defined lipid environments without contact with detergents. This protocol describes the preparation of essential system components and the critical parameters for improving expression efficiency and sample quality.
Cell-free expression systems allow the tailored design of reaction environments to support the functional folding of even complex proteins such as membrane proteins. The experimental procedures for the co-translational insertion and folding of membrane proteins into preformed and defined membranes supplied as nanodiscs are demonstrated. The protocol is completely detergent-free and can generate milligrams of purified samples within one day. The resulting membrane protein/nanodisc samples can be used for a variety of functional studies and structural applications such as crystallization, nuclear magnetic resonance, or electron microscopy. The preparation of basic key components such as cell-free lysates, nanodiscs with designed membranes, critical stock solutions as well as the assembly of two-compartment cell-free expression reactions is described. Since folding requirements of membrane proteins can be highly diverse, a major focus of this protocol is the modulation of parameters and reaction steps important for sample quality such as critical basic reaction compounds, membrane composition of nanodiscs, redox and chaperone environment, or DNA template design. The whole process is demonstrated with the synthesis of proteorhodopsin and a G-protein coupled receptor.
Membrane proteins (MPs) are challenging targets in protein production studies due to their insolubility in aqueous environments. Conventional MP production platforms comprise cell-based systems such as E. coli, yeast, or eukaryotic cells. The synthesized recombinant MPs are either extracted from cell membranes or refolded from inclusion bodies1. After detergent solubilization, MPs can be transferred into suitable membrane environments by established in vitro reconstitution protocols. Besides vesicles and liposomes, MP reconstitution into planar membranes in the form of nanodiscs2 or salipro3
1. Preparation of S30 lysate
The impact of fine-tuning reaction compounds on the final yield or quality of synthesized MPs is exemplified. A frequent routine approach is to adjust the optimal Mg2+ concentration in CF reactions by expression of green fluorescent protein (GFP) as a convenient monitor of system efficiency. As an example, GFP was synthesized from a pET-21a(+) vector at Mg2+ concentrations between 14 and 24 mM (Figure 2). SDS-PAGE analysis identified the optimal Mg2+ concentr.......
The setup and strategies to optimize the CF expression and co-translational insertion of functional MPs into nanodiscs are described. The required equipment comprises a bioreactor, a French press device or similar, an UV/VIS and fluorescence reader, CF reaction vessels suitable for a two-compartment configuration setup, and a temperature-controlled incubator. Further standard equipment are centrifuges for harvesting E. coli cells as well as tabletop centrifuges reaching at least 30,000 x g for preparati.......
We would like to thank the Deutsche Forschungsgemeinschaft (DFG) grant BE1911/8-1, the LOEWE project GLUE, and the collaborative research center Transport and Communication across Membranes (SFB807) for financial support.
....Name | Company | Catalog Number | Comments |
1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DMPG) | Avanti Polar Lipids (USA) | 840445P | |
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) | Avanti Polar Lipids (USA) | 850345C | |
1,2-dioleoyl-sn-glycero-3-phosphocholine (sodium salt) (DOPC) | Avanti Polar Lipids (USA) | 850375C | |
1,2 dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (sodium salt) (DOPG) | Avanti Polar Lipids (USA) | 840475C | |
1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) | Avanti Polar Lipids (USA) | 850457C | |
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (POPG) | Avanti Polar Lipids (USA) | 840034C | |
2-Amino-2-(hydroxymethyl)-propan-1,3-diol (Tris) | Carl Roth (Germany) | 4855 | |
2-Mercaptoethanol | Carl Roth (Germany) | 4227 | |
2-Propanol | Carl Roth (Germany) | 9781 | |
[3H]-dihydroalprenolol Hydrochloride | American Radiolabeled Chemicals (USA) | ART0134 | |
Acetyl phosphate lithium potassium salt (ACP) | Merck (Germany) | 1409 | |
Adenosine 5’-triphosphate (ATP) | Sigma Aldrich (Germany) | A9251 | |
Alprenolol hydrochloride | Merck (Germany) | A0360000 | |
Anion exchange chromatography column material: Q-sepharose® | Sigma-Aldrich (Germany) | Q1126 | |
Autoclave Type GE 446EC-1 | Gettinge (Germany) | ||
Bioreactor Type 884 124/1 | B.Braun (Germany) | ||
Centrifuge | Sorvall RC12BP+; Thermo Scientific (Germany); Sorvall RC-5C; Thermo Scientific (Germany); Mikro 22 R; Hettich (Germany) | ||
Cholic acid | Carl Roth (Germany) | 8137 | |
Coomassie Brilliant Blue R250 | Carl Roth (Germany) | 3862 | |
Culture flasks 500 ml baffled flasks, 2 l baffled flasks | Schott Duran (Germany) | ||
Cytidine 5'-triphosphate disodium salt | Sigma-Aldrich (Germany) | C1506 | |
D-glucose monohydrate | Carl Roth (Germany) | 6780 | |
Di-potassiumhydrogen phosphate trihydrate | Carl Roth (Germany) | 6878 | |
Dialysis tubing SpectrumTM Labs Spectra/PorTM 12-14 kD MWCO Standard RC tubing | Fisher Scientific (Germany) | 8700152 | |
Dithiothreit | Carl Roth (Germany) | 6908 | |
Ethanol | Carl Roth (Germany) | K928 | |
Folinic acid calcium salt hydrate | Sigma-Aldrich (Germany) | 47612 | |
French pressure cell disruptor | SLM; Amico Instruments (USA) | ||
Glycerol | Carl Roth (Germany) | 3783 | |
Guanosine 5'-triphosphate di-sodium salt (GTP) | Sigma-Aldrich (Germany) | G8877 | |
Hydrochloric Acid | Carl Roth (Germany) | K025 | |
IMAC column: HiTrap IMAC HP 5 mL | GE Life Sciences (Germany) | GE17-5248 | |
Imidazole | Carl Roth (Germany) | 3899 | |
Isopropyl-β-D-thiogalactopyranosid (IPTG) | Carl Roth (Germany) | 2316 | |
Kanamycin | Carl Roth (Germany) | T832 | |
L-Alanine | Carl Roth (Germany) | 3076.1 | |
L-Arginine | Carl Roth (Germany) | 6908 | |
L-Asparagine | Carl Roth (Germany) | HN23 | |
L-Aspartic Acid | Carl Roth (Germany) | T202 | |
L-Cysteine | Carl Roth (Germany) | T203 | |
L-Glutamic Acid | Carl Roth (Germany) | 3774 | |
L-Glutamine | Carl Roth (Germany) | 3772 | |
L-Glycine | Carl Roth (Germany) | 3187 | |
L-Histidine | Carl Roth (Germany) | 3852 | |
L-Isoleucine | Carl Roth (Germany) | 3922 | |
L-Leucine | Carl Roth (Germany) | 1699 | |
L-Lysine | Carl Roth (Germany) | 4207 | |
L-Methionine | Carl Roth (Germany) | 9359 | |
L-Proline | Carl Roth (Germany) | 1713 | |
L-Phenylalanine | Carl Roth (Germany) | 1709 | |
L-Serine | Carl Roth (Germany) | 4682 | |
L-Threonine | Carl Roth (Germany) | 1738 | |
L-Tryptophane | Carl Roth (Germany) | 7700 | |
L-Tyrosine | Carl Roth (Germany) | T207 | |
MD100 dialysis units | Scienova (Germany) | 40077 | |
N-2-Hydroxyethylpiperazine-N'-2-ethansulfonic acid (HEPES) | Carl Roth (Germany) | 6763 | |
n-dodecylphosphocholine | Antrace (USA) | F308S | |
PAGE chamber: Mini-Protean Tetra Cell | Biorad (Germany) | ||
PAGE gel casting system: Mini Protean Handcast systems | Biorad (Germany) | ||
PAGE gel power supply: Power Pac 3000 | Biorad (Germany) | ||
Tryptone/peptone from caseine | Carl Roth (Germany) | 6681 | |
Peristaltic pump: ip-12 | Ismatec (Germany) | ||
Phosphoenol pyruvate monopotassium salt | Sigma Aldrich (Germany) | 860077 | |
Potassium dihydrogen phosphate | Carl Roth (Germany) | P018 | |
Potassium acetate | Carl Roth (Germany) | 4986 | |
Potassium chloride | Carl Roth (Germany) | 6781 | |
Pyruvate Kinase | Roche (Germany) | 10109045001 | |
Scintillation counter: Hidex 300 SL | Hidex (Finland) | ||
SDS pellets | Carl Roth (Germany) | 8029 | |
Sodium azide | Sigma-Aldrich (Germany) | K305 | |
Sodium chloride | Carl Roth (Germany) | P029 | |
Spectrophotometer Nanodrop | Peqlab (Germany) | ||
Spectrophotometer/fluorescence reader Spark® | Tecan (Switzerland) | ||
tRNA (E. coli) | Roche (Germany) | 10109550001 | |
Ultra sonificator | Labsonic U, B. Braun (Germany) | ||
Uridine 5’-triphosphate tri-sodium salt (UTP) | Sigma-Aldrich (Germany) | U6625 | |
Y-30 antifoam | Sigma-Aldrich (Germany) | A6457 | |
Yeast extract | Carl Roth (Germany) | 2904 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved