A subscription to JoVE is required to view this content. Sign in or start your free trial.
The experimental procedures for performing diethylpyrocarbonate-based covalent labeling with mass spectrometric detection are described. Diethylpyrocarbonate is simply mixed with the protein or protein complex of interest, leading to the modification of solvent accessible amino acid residues. The modified residues can be identified after proteolytic digestion and liquid chromatography/mass spectrometry analysis.
Characterizing a protein's higher-order structure is essential for understanding its function. Mass spectrometry (MS) has emerged as a powerful tool for this purpose, especially for protein systems that are difficult to study by traditional methods. To study a protein's structure by MS, specific chemical reactions are performed in solution that encode a protein's structural information into its mass. One particularly effective approach is to use reagents that covalently modify solvent accessible amino acid side chains. These reactions lead to mass increases that can be localized with residue-level resolution when combined with proteolytic digestion and tandem mass spectrometry. Here, we describe the protocols associated with use of diethylpyrocarbonate (DEPC) as a covalent labeling reagent together with MS detection. DEPC is a highly electrophilic molecule capable of labeling up to 30% of the residues in the average protein, thereby providing excellent structural resolution. DEPC has been successfully used together with MS to obtain structural information for small single-domain proteins, such as β2-microglobulin, to large multi-domain proteins, such as monoclonal antibodies.
Proteins are essential biomolecules in virtually every physiological process. The variety of functions that proteins perform are possible because of the structures they adopt and the interactions that they have with other biomolecules. To understand protein function at a deeper level, biochemical and biophysical tools are needed to elucidate these important structural features and interactions. Traditionally, X-ray crystallography, cryogenic electron microscopy, and nuclear magnetic resonance (NMR) spectroscopy have provided the desired atomic-level detail to reveal protein structure. However, numerous protein systems cannot be interrogated by these techniques because of poor crystallization behavior, limited protein availability, excessive sample heterogeneity, or molecular weight limitations. Consequently, newer analysis methods have emerged that overcome these limitations. Among the emerging techniques that can provide protein structural information is mass spectrometry.
Mass spectrometry (MS) measures a molecule's mass-to-charge (m/z) ratio, so protein higher-order structural information must be obtained by encoding the desired structural information into the mass of the protein. Several approaches to encode this information have been developed, including hydrogen-deuterium exchange (HDX)1,2,3,4, chemical crosslinking (XL)5,6, and covalent labeling (CL)7,8,9,10. In HDX, backbone amide hydrogens are exchanged by slightly more massive deuteriums at rates that depend on solvent accessibility and H-bonding extent. The extent of HDX can be localized by rapidly digesting the protein into peptide fragments before separating and measuring these fragments by the mass spectrometer or by dissociating the protein in a top-down experiment. Determining the rate of exchange provides further insight into protein dynamics. HDX has proven to be a valuable tool for characterizing protein structure despite challenges associated with back exchange and the need for specialized equipment to maximize reproducibility. In XL-MS, proteins are reacted with bi-functional reagents that covalently link adjacent residue side chains within a given protein or between two proteins. In doing so, XL-MS can provide distance constraints that can be used to characterize protein structure. The regions of the protein that are cross-linked can be identified by proteolytic digestion followed by liquid chromatography (LC)-MS analysis. While XL-MS is a versatile tool that has been used to study a variety of protein complexes, including inside cells, identification of the XL products is challenging and requires specialized software.
CL-MS has emerged recently as a complementary and sometimes alternative MS-based tool to study protein structure and interactions. In CL-MS, a protein or protein complex is covalently modified with a mono-functional reagent that can react with solvent-exposed side chains (Figure 1). By comparing the modification extents of a protein or protein complex under different conditions, conformation changes, binding sites, and protein-protein interfaces can be revealed. After the CL reaction, site-specific information, often at the single amino-acid level, can be obtained using typical bottom-up proteomics workflows in which proteins are proteolytically digested, peptide fragments are separated by LC, and modified sites are identified using tandem MS (MS/MS). The rich history of bioconjugate chemistry has made numerous reagents available for CL-MS experiments. CL reagents fall into two general categories: (i) specific and (ii) non-specific. Specific reagents react with a single functional group (e.g., free amines)8,10 and are easy to implement, but they tend to provide limited structural information. Non-specific reagents react with a wide range of side chains, but often require specialized equipment such as lasers or synchrotron sources to produce these highly reactive species. Hydroxyl radicals are the most commonly used non-specific reagent, having been applied in hydroxyl radical footprinting (HRF)7,11,12,13 experiments to study a wide range of proteins and protein complexes under a variety of conditions.
Our research group has successfully used another relatively non-specific reagent called diethylpyrocarbonate (DEPC) to study protein structure and interactions in the context of CL-MS experiments14,15,16,17,18,19,20,21,22,23,24,25. DEPC offers the simplicity of specific labeling reagents (i.e., no specialized equipment is necessary to perform the reactions), while reacting with up to 30% of amino acids in the average protein. As a highly electrophilic reagent, DEPC is capable of reacting with the N-terminus and the nucleophilic side chains of cysteine, histidine, lysine, tyrosine, serine, and threonine residues. Typically, a single product of these reactions is generated, resulting in a mass increase of 72.02 Da. This single type of product contrasts with the up to 55 different products that can be produced when proteins react with hydroxyl radicals7. Such simple chemistry facilitates identification of labeled sites.
Here, we provide protocols for using DEPC-based CL-MS to study protein structure and interactions. Details associated with reagent preparation, DEPC-protein reactions, protein digestion conditions, LC-MS and MS/MS parameters, and data analysis are described. We also demonstrate the utility of DEPC labeling by providing example results from protein-metal, protein-ligand, and protein-protein interactions as well as proteins undergoing structural changes upon heating.
1. Protein and reagent preparation
NOTE: This protocol includes an example workflow for labeling a protein with DEPC. Some conditions and reagent concentrations listed may vary based on the protein of choice.
2. Covalent labeling of intact protein
3. Preparation of protein digest for bottom-up LC-MS
NOTE: Choose digestion conditions that are amenable to the protein of interest. Common steps involve unfolding the protein and reducing and alkylating any disulfide bonds.
4. LC-MS/MS Analysis
NOTE: Standard LC-MS/MS parameters for bottom-up proteomics can be used to identify labeled sites on the proteolytic peptide fragments. A general example is outlined below.
5. Data analysis
Identifying DEPC modification sites and modification percentages
Mass addition due to covalent labeling can be measured at the (a) intact protein and (b) peptide levels8,9. At the intact level, a distribution of protein species with different numbers of labels can be obtained from direct analysis or LC-MS of labeled protein samples. To obtain higher resolution structural information (i.e., site-specific labeling data), measurements must be performe...
Critical Steps
Several points regarding experimental design should be considered to ensure reliable labeling results. First, to maximize protein labeling, it is necessary to avoid buffers with strongly nucleophilic groups (e.g., Tris) because they can react with DEPC and lower the extent of labeling. It is also conceivable that such buffers could react with labeled residues, causing the removal of the label and therefore loss of structural information. We recommend MOPS as a buffer, but phosphate buffered ...
The authors have nothing to disclose.
The authors acknowledge support from the National Institutes of Health (NIH) under Grant R01 GM075092. The Thermo Orbitrap Fusion mass spectrometer used to acquire some of the data described here was acquired with funds from the National Institutes of Health grant S10OD010645.
Name | Company | Catalog Number | Comments |
1.5 mL microcentrifuge tube | Thermo Fisher Scientific | 3448 | |
3-(N-morpholino)propanesulfonic acid | Millipore Sigma | M1254 | |
3-(N-morpholino)propanesulfonic acid sodium salt | Millipore Sigma | M9381 | |
Acclaim PepMap RSLC C18 Column | Thermo Scientific | 164537 | 300 μm x 15 cm, C18, 2 μm, 100 A |
Acetonitrile | Fisher Scientific | A998-1 | |
Diethylpyrocarbonate | Millipore Sigma | D5758 | |
HPLC-grade water | Fisher Scientific | W5-1 | |
Imidazole | Millipore Sigma | I5513 | |
Immobilized chymotrypsin | ProteoChem | g4105 | |
Immobilized trypsin, TPCK Treated | Thermo Fisher Scientific | 20230 | |
Iodoacetamide | Millipore Sigma | I1149 | |
Tris(2-carboxyethyl)phosphine | Millipore Sigma | C4706 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved