A subscription to JoVE is required to view this content. Sign in or start your free trial.
This report describes techniques to isolate and purify sulfated glycosaminoglycans (GAGs) from biological samples and a polyacrylamide gel electrophoresis approach to approximate their size. GAGs contribute to tissue structure and influence signaling processes via electrostatic interaction with proteins. GAG polymer length contributes to their binding affinity for cognate ligands.
Sulfated glycosaminoglycans (GAGs) such as heparan sulfate (HS) and chondroitin sulfate (CS) are ubiquitous in living organisms and play a critical role in a variety of basic biological structures and processes. As polymers, GAGs exist as a polydisperse mixture containing polysaccharide chains that can range from 4000 Da to well over 40,000 Da. Within these chains exists domains of sulfation, conferring a pattern of negative charge that facilitates interaction with positively charged residues of cognate protein ligands. Sulfated domains of GAGs must be of sufficient length to allow for these electrostatic interactions. To understand the function of GAGs in biological tissues, the investigator must be able to isolate, purify, and measure the size of GAGs. This report describes a practical and versatile polyacrylamide gel electrophoresis-based technique that can be leveraged to resolve relatively small differences in size between GAGs isolated from a variety of biological tissue types.
Glycosaminoglycans (GAGs) are a diverse family of linear polysaccharides that are a ubiquitous element in living organisms and contribute to many basic physiological processes1. GAGs such as heparan sulfate (HS) and chondroitin sulfate (CS) may be sulfated at distinct positions along the polysaccharide chain, imparting geographic domains of negative charge. These GAGs, when tethered to cell-surface proteins known as proteoglycans, project into the extracellular space and bind to cognate ligands, allowing for the regulation of both cis- (ligand attached to the same cell) and trans- (ligand attached to neighboring cell) signaling processes
All biological samples analyzed in this protocol were obtained from mice, under protocols approved by the University of Colorado Institutional Animal Care and Use Committee.
1. Heparan sulfate isolation
Alcian blue is used to stain sulfated GAGs 10; this signal is amplified by use of a subsequent silver stain 11. Figure 1 provides a visual demonstration of the silver staining development process. As demonstrated, the Alcian blue signal representing GAGs separated by electrophoresis is amplified as the developing agent penetrates the polyacrylamide gel. Typically, the developing process will reduce silver and Alcian blue-stained GAGs in a densi.......
GAGs play a central role in many diverse biological processes. One of the principal functions of sulfated GAGs (such as HS and CS) is to interact with and bind to ligands, which can alter downstream signaling functions. An important determinant of GAG binding affinity to cognate ligands is the length of the GAG polymer chain 8,9,14. For this reason, it is important for researchers to be able to define with reasonable precision t.......
This work was funded by F31 HL143873-01 (WBL), R01 HL125371 (RJL and EPS)
....Name | Company | Catalog Number | Comments |
Accuspin Micro17 benchtop microcentrifuge | thermoFisher Scientific | 13-100-675 | Any benchtop microcentrifuge/rotor combination capable of 14000 xG is appropriate |
Acrylamide (solid) | thermoFisher Scientific | BP170-100 | Electrophoresis grade |
Actinase E | Sigma Aldrich | P5147 | Protease mix from S. griseus |
Alcian Blue 8GX (solid) | thermoFisher Scientific | AC400460100 | |
Ammonium acetate (solid) | thermoFisher Scientific | A639-500 | Molecular biology grade |
Ammonium hydroxide (liquid) | thermoFisher Scientific | A669S-500 | certified ACS |
Ammonium persulfate (solid) | thermoFisher Scientific | BP179-25 | electrophoresis grade |
Barnstead GenPure Pro Water Purification System | ThermoFisher Scientific | 10-451-217PKG | Any water deionizing/ purification system is an acceptable substitute |
Boric acid (solid) | thermoFisher Scientific | A73-500 | Molecular biology grade |
Bromphenol blue (solid) | thermoFisher Scientific | B392-5 | |
Calcium acetate (solid) | ThermoFisher Scientific | 18-609-432 | Molecular biology grade |
Calcium chloride (solid) | ThermoFisher Scientific | AC349610250 | Molecular biology grade |
CHAPS detergent (3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate) | ThermoFisher Scientific | 28299 | |
Chondroitinase ABC | Sigma Aldrich | C3667 | |
Criterion empty cassette for PAGE (1.0mm thick, 12+2 wells) | Bio-Rad | 3459901 | Any 1.0mm thick PAGE casting cassette system will suffice |
Criterion PAGE Cell system (cell and power supply) | Bio-Rad | 1656019 | any comparable vertical gel PAGE system will work) |
Dichloromethane (liquid) | thermoFisher Scientific | AC610931000 | certified ACS |
EDTA disodium salt (solid) | thermoFisher Scientific | 02-002-786 | Molecular biology grade |
Glacial acetic acid (liquid) | thermoFisher Scientific | A35-500 | Certified ACS |
Glycine (solid) | thermoFisher Scientific | G48-500 | Electrophoresis grade |
Heparanase I/III | Sigma Aldrich | H3917 | From Flavobacterium heparinum |
Heparin derived decasaccharide (dp10) | galen scientific | HO10 | |
Heparin derived hexasaccharde (dp6) | Galen scientific | HO06 | |
Heparin derived oligosaccharide (dp20) | galen scientific | HO20 | |
Hydrochloric acid (liquid) | thermoFisher Scientific | A466-250 | |
Lyophilizer | Labconco | 7752020 | Any lyophilizer that can achieve -40C and 0.135 Torr will work; can also be replaced with rotational vacuum concentrator |
Methanol (liquid) | thermoFisher Scientific | A412-500 | Certified ACS |
Molecular Imager Gel Doc XR System | Bio-Rad | 170-8170 | Any comparable gel imaging system is an acceptable substitute |
N,N'-methylene-bis-acrylamide (solid) | thermoFisher Scientific | BP171-25 | Electrophoresis grade |
Phenol red (solid) | thermoFisher Scientific | P74-10 | Free acid |
Q Mini H Ion Exchange Column | Vivapure | VS-IX01QH24 | Ion exchange column must have minimum loading volume of 0.4mL, working pH of 2-12, and selectivity for ionic groups with pKa of 11 |
Silver nitrate (solid) | thermoFisher Scientific | S181-25 | certified ACS |
Sodium Acetate (solid) | ThermoFisher Scientific | S210-500 | Molecular biology grade |
Sodium chloride (solid) | thermoFisher Scientific | S271-500 | Molecular biology grade |
Sodium hydroxide (solid) | thermoFisher Scientific | S392-212 | |
Sucrose (solid) | thermoFisher Scientific | BP220-1 | Molecular biology grade |
TEMED (N,N,N',N'-tetramethylenediamine) | thermoFisher Scientific | BP150-20 | Electrophoresis grade |
Tris base (solid) | thermoFisher Scientific | BP152-500 | Molecular biology grade |
Ultra Centrifugal filters, 0.5mL, 3000 Da molecular weight cutoff | Amicon | UFC500324 | Larger volume filter units may be used, depending on sample size. |
Urea (solid) | ThermoFisher Scientific | 29700 | |
Vacufuge Plus | Eppendorf | 22820001 | Any rotational vacuum concentrator will work; can be replaced with lyophilizer |
Vacuum filter unit, single use, 0.22uM pore PES, 500mL volume | thermoFisher Scientific | 569-0020 | Alternative volumes and filter materials acceptable |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved