A subscription to JoVE is required to view this content. Sign in or start your free trial.
The Differential Radial Capillary Action of Ligand Assay (DRaCALA) can be used to identify small ligand binding proteins of an organism by using an ORFeome library.
The past decade has seen tremendous progress in the understanding of small signaling molecules in bacterial physiology. In particular, the target proteins of several nucleotide-derived secondary messengers (NSMs) have been systematically identified and studied in model organisms. These achievements are mainly due to the development of several new techniques including the capture compound technique and the differential radial capillary action of ligand assay (DRaCALA), which were used to systematically identify target proteins of these small molecules. This paper describes the use of the NSMs, guanosine penta- and tetraphosphates (p)ppGpp, as an example and video demonstration of the DRaCALA technique. Using DRaCALA, 9 out of 20 known and 12 new target proteins of (p)ppGpp were identified in the model organism, Escherichia coli K-12, demonstrating the power of this assay. In principle, DRaCALA could be used for studying small ligands that can be labeled by radioactive isotopes or fluorescent dyes. The critical steps, pros, and cons of DRaCALA are discussed here for further application of this technique.
Bacteria use several small signaling molecules to adapt to constantly changing environments1,2. For example, the autoinducers, N-acylhomoserine lactones and their modified oligopeptides, mediate the intercellular communication among bacteria to coordinate population behavior, a phenomenon known as quorum sensing2. Another group of small signaling molecules is the NSMs, including the widely studied cyclic adenosine monophosphate (cAMP), cyclic di-AMP, cyclic di-guanosine monophosphate (cyclic di-GMP), and guanosine penta- and tetra phosphates (p)ppGpp1. B....
1. Preparation of whole cell lysates
Following the above-described protocol will typically yield two types of results (Figure 3).
Figure 3A shows a plate with relatively low background binding signals (binding fractions < 0.025) from the majority of wells. The positive binding signal from the well H3 gives a binding fraction of ~0.35 that is much higher than that observed for the other wells. Even without quantification, well H3 is remarkable, suggesting that a targe.......
One of the critical steps in performing DRaCALA screening is to obtain good whole cell lysates. First, the tested proteins should be produced in large amounts and in soluble forms. Second, the lysis of cells should be complete, and the viscosity of the lysate must be minimal. The inclusion of lysozyme and the use of three cycles of freeze-thaw are often enough to lyse cells completely. However, the released chromosomal DNA makes the lysate viscous and generates high background binding signal, resulting in false positives.......
The work is supported by an NNF Project Grant (NNF19OC0058331) to YEZ, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (Nº 801199) to MLS.
....Name | Company | Catalog Number | Comments |
32P-α-GTP | Perkinelmer | BLU006X250UC | |
96 x pin tool | V&P Scientific | VP 404 | 96 Bolt Replicator, on 9 mm centers, 4.2 mm Bolt Diameter, 24 mm long |
96-well V-bottom microtiter plate | Sterilin | MIC9004 | Sterilin Microplate V Well 611V96 |
Agar | OXOID - Thermo Fisher | LP0011 | Agar no. 1 |
ASKA collection strain | NBRP, SHIGEN, JAPAN | Ref: DNA Research, Volume 12, Issue 5, 2005, Pages 291–299. https://doi.org/10.1093/dnares/dsi012 | |
Benzonase | SIGMA | E1014-25KU | genetically engineered endonuclease from Serratia marcescens |
Bradford Protein Assay Dye | Bio-Rad | 5000006 | Reagent Concentrate |
DMSO | SIGMA | D8418 | ≥99.9% |
DNase 1 | SIGMA | DN25-1G | |
gel filtration10x300 column | GE Healthcare | 28990944 | contains 20% ethanol as preservative |
Glycerol | PanReac AppliChem | 122329.1214 | Glycerol 87% for analysis |
Hypercassette | Amersham | RPN 11647 | 20 x 40 cm |
Imidazole | SIGMA | 56750 | puriss. p.a., ≥ 99.5% (GC) |
IP Storage Phosphor Screen | FUJIFILM | 28956474 | BAS-MS 2040 20x 40 cm |
Isopropyl β-d-1-thiogalactopyranoside (IPTG) | SIGMA | I6758 | Isopropyl β-D-thiogalactoside |
Lysogeny Broth (LB) | Invitrogen - Thermo Fisher | 12795027 | Miller's LB Broth Base |
Lysozyme | SIGMA | L4949 | from chicken egg white; BioUltra, lyophilized powder, ≥98% |
MgCl2 (Magnesium chloride) | SIGMA | 208337 | |
MilliQ water | ultrapure water | ||
multichannel pipette | Thermo Scientific | 4661110 | F1 - Clip Tip; 1-10 ul, 8 x channels |
NaCl | VWR Chemicals | 27810 | AnalaR NORMAPUR, ACS, Reag. Ph. Eur. |
Ni-NTA Agarose | Qiagen | 30230 | |
Nitrocellulose Blotting Membrane | Amersham Protran | 10600003 | Premium 0.45 um 300 mm x 4 m |
PBS | OXOID - Thermo Fisher | BR0014G | Phosphate buffered saline (Dulbecco A), Tablets |
PEG3350 (Polyethylene glycol 3350) | SIGMA | 202444 | |
phenylmethylsulfonyl fluoride (PMSF) | SIGMA | 93482 | Phenylmethanesulfonyl fluoride solution - 0.1 M in ethanol (T) |
Phosphor-imager | GE Healthcare | 28955809 | Typhoon FLA-7000 Phosphor-imager |
Pipette Tips, filtered | Thermo Scientific | 94410040 | ClipTip 12.5 μl nonsterile |
Poly-Prep Chromatography column | Bio-Rad | 7311550 | polypropylene chromatography column |
Protease inhibitor Mini | Pierce | A32955 | Tablets, EDTA-free |
screw cap tube | Thermo Scientific | 3488 | Microcentifuge Tubes, 2.0 ml with screw cap, nonsterile |
SLS 96-deep Well plates | Greiner | 780285 | MASTERBLOCK, 2 ML, PP, V-Bottom, Natural |
spin column | Millipore | UFC500396 | Amicon Ultra -0.5 ml Centrifugal Filters |
Thermomixer | Eppendorf | 5382000015 | Thermomixer C |
TLC plate (PEI-cellulose F TLC plates) | Merck Millipore | 105579 | DC PEI-cellulose F (20 x 20 cm) |
Tris | SIGMA | BP152 | Tris Base for Molecular Biology |
Tween 20 | SIGMA | P1379 | viscous non-ionic detergent |
β-mercaptoethanol | SIGMA | M3148 | 99% (GC/titration) |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved