JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Precision Cut Lung Slices as an Efficient Tool for Ex vivo Pulmonary Vessel Structure and Contractility Studies

Published: May 24th, 2021



1Divisions of Pulmonary Medicine, Boston Children's Hospital

Presented here is a protocol for preserving the vascular contractility of PCLS murine lung tissue, resulting in a sophisticated three-dimensional image of the pulmonary vasculature and airway, which can be preserved for up to 10 days that is susceptible to numerous procedures.

The visualization of murine lung tissue provides valuable structural and cellular information regarding the underlying airway and vasculature. However, the preservation of pulmonary vessels that truly represents physiological conditions still presents challenges. In addition, the delicate configuration of murine lungs result in technical challenges preparing samples for high-quality images that preserve both cellular composition and architecture. Similarly, cellular contractility assays can be performed to study the potential of cells to respond to vasoconstrictors in vitro, but these assays do not reproduce the complex environment of the intact lung. In contrast to these technical issues, the precision-cut lung slice (PCLS) method can be applied as an efficient alternative to visualize lung tissue in three dimensions without regional bias and serve as a live surrogate contractility model for up to 10 days. Tissue prepared using PCLS has preserved structure and spatial orientation, making it ideal to study disease processes ex vivo. The location of endogenous tdTomato-labeled cells in PCLS harvested from an inducible tdTomato reporter murine model can be successfully visualized by confocal microscopy. After exposure to vasoconstrictors, PCLS demonstrates the preservation of both vessel contractility and lung structure, which can be captured by a time-lapse module. In combination with the other procedures, such as western blot and RNA analysis, PCLS can contribute to the comprehensive understanding of signaling cascades that underlie a wide variety of disorders and lead to a better understanding of the pathophysiology in pulmonary vascular diseases.

Advances in the preparation and imaging of lung tissue that preserves cellular components without sacrificing anatomical structure provide a detailed understanding of pulmonary diseases. The ability to identify proteins, RNA, and other biological compounds while maintaining physiological structure offers vital information on the spatial arrangement of cells that can broaden the understanding of the pathophysiology in numerous pulmonary diseases. These detailed images can lead to a better understanding of pulmonary vascular diseases, such as pulmonary artery hypertension, when applied to animal models, potentially leading to improved therapeutic strategies.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal care was in accordance with the guidelines of Boston Children's Hospital and the Institutional Animal Care and Use Committee approved protocols. The mice used in this study are wild type C57/B6 mice and Cdh5-CreERT2 x Ai14 tdTomato crossed mice.

1. Preparation of solutions

  1. Prepare phosphate buffer solution (1x PBS) and 2% agarose solution required during the experiment in advance.
    1. Mix 2 g agarose powder into 100 mL of autoclaved water. Heat it in the micr.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

When added to cells or tissue, the viability reagent is modified by the reducing environment of viable tissue and turns pink/red, becoming highly fluorescent. The representative color changes detected from day 0-1 and day 9-10 are demonstrated in Figure 3. As noted, the solution started blue and turned pink overnight, demonstrating viability. Color change typically occurs within 1-4 h; however, a longer time may be necessary. To assay for viability, a plate reader was used to determine the a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this manuscript, an enhanced method to produce high-resolution images of murine lung tissue that preserves the vascular structure and optimizes experimental flexibility is described, specifically using the application of PCLS to obtain microslices of lung tissue that can be viewed in three dimensions with preserved contractility of the vasculature. Using the viability reagent, the protocol demonstrates that carefully prepared and preserved slices can retain viability for more than a week. Preserved viability of the mi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Drs. Yuan Hao and Kaifeng Liu for their technical support. This work was supported by an NIH 1R01 HL150106-01A1, the Parker B. Francis Fellowship, and the Pulmonary Hypertension Association Aldrighetti Research Award to Dr. Ke Yuan.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
0.5cc of fractionated heparin in syringe BD 100 USP units per mL
1X PBS Corning  21-040-CM
20 1/2 inch gauge blunt end needle for trachea cannulation Cml Supply 90120050D
30cc syringe BD 309650
Anti Anti solution Gibco 15240096
Automated vibrating blade microtome Leica VT1200S
Cell Viability Reagent (alamarBlue) Thermofisher DAL1025
Confocal Zeiss 880
Dulbecco’s Modified Eagle Medium and GLutaMAX, supplemented with 10% FBS, 1% Pen/Strep Gibco 10569-010
Endothelin-1 Sigma E7764
KCl Sigma 7447-40-7
Mortar and Pestle Amazon
RIPA lysis and extraction buffer Thermoscientific 89900
Surgical suture 6/0 FST 18020-60
TRIzol Reagent Invitrogen, Thermofisher 15596026
UltraPure Low Melting Point Agarose Invitrogen 16520050
Vibratome Leica Biosystems VT1200 S
Winged blood collection set (Butterfly needle) 25-30G BD 25-30G

  1. Sparrow, D., Weiss, S. T. Respiratory physiology. Annual Review of Gerontology & Geriatrics. 6, 197-214 (1986).
  2. Gerckens, M., et al. Generation of human 3D lung tissue cultures (3D-LTCs) for disease modeling. Journal of Visualized Experiments: JoVE. (144), e58437 (2019).
  3. Li, G., et al. Preserving airway smooth muscle contraction in precision-cut lung slices. Scientific Reports. 10 (1), 6480 (2020).
  4. Rosales Gerpe, M. C., et al. Use of precision-cut lung slices as an ex vivo tool for evaluating viruses and viral vectors for gene and oncolytic therapy. Molecular Therapy: Methods & Clinical Development. 10, 245-256 (2018).
  5. Sanderson, M. J. Exploring lung physiology in health and disease with lung slices. Pulmonary Pharmacology & Therapeutics. 24 (5), 452-465 (2011).
  6. Liu, R., et al. Mouse lung slices: An ex vivo model for the evaluation of antiviral and anti-inflammatory agents against influenza viruses. Antiviral Research. 120, 101-111 (2015).
  7. de Graaf, I. A., et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nature Protocols. 5 (9), 1540-1551 (2010).
  8. Alsafadi, H. N., et al. Applications and approaches for three-dimensional precision-cut lung slices. Disease modeling and drug discovery. American Journal of Respiratory Cell and Molecular Biology. 62 (6), 681-691 (2020).
  9. Morin, J. P., et al. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies. Xenobiotica. 43 (1), 63-72 (2013).
  10. Springer, J., Fischer, A. Substance P-induced pulmonary vascular remodelling in precision cut lung slices. The European Respiratory Journal. 22 (4), 596-601 (2003).
  11. Suleiman, S., et al. Argon reduces the pulmonary vascular tone in rats and humans by GABA-receptor activation. Scientific Reports. 9 (1), 1902 (2019).
  12. Rieg, A. D., et al. Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices. PLoS One. 6 (12), 29698 (2011).
  13. Perez, J. F., Sanderson, M. J. The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. The Journal of General Physiology. 125 (6), 535-553 (2005).
  14. Deng, C. Y., et al. Upregulation of 5-hydroxytryptamine receptor signaling in coronary arteries after organ culture. PLoS One. 9 (9), 107128 (2014).
  15. Sandker, S. C., et al. Adventitial dissection: A simple and effective way to reduce radial artery spasm in coronary bypass surgery. Interactive Cardiovascular and Thoracic Surgery. 17 (5), 784-789 (2013).
  16. Naik, J. S., et al. Pressure-induced smooth muscle cell depolarization in pulmonary arteries from control and chronically hypoxic rats does not cause myogenic vasoconstriction. Journal of Applied Physiology. 98 (3), 1119-1124 (2005).
  17. Lopez-Lopez, J. G., et al. Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. American Journal of Physiology. Lung Cellular and Molecular Physiology. 295 (5), 727-732 (2008).
  18. Gonzalez-Tajuelo, R., et al. Spontaneous pulmonary hypertension associated with systemic sclerosis in P-selectin glycoprotein Ligand 1-deficient mice. Arthritis & Rheumatology. 72 (3), 477-487 (2020).
  19. Bai, Y., Sanderson, M. J. Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. American Journal of Physiology. Lung Cellular and Molecular Physiology. 291 (2), 208-221 (2006).
  20. Nishiyama, S. K., et al. Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. Journal of Applied Physiology. 122 (2), 354-360 (2017).
  21. Schneider, M. P., Inscho, E. W., Pollock, D. M. Attenuated vasoconstrictor responses to endothelin in afferent arterioles during a high-salt diet. American Journal of Physiology. Renal Physiology. 292 (4), 1208-1214 (2007).
  22. Inscho, E. W., Imig, J. D., Cook, A. K. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores. Hypertension. 29, 222-227 (1997).
  23. Vecchione, C., et al. Protection from angiotensin II-mediated vasculotoxic and hypertensive response in mice lacking PI3Kgamma. The Journal of Experimental Medicine. 201 (8), 1217-1228 (2005).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved