JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Isolation of Mouse Megakaryocyte Progenitors

Published: May 20th, 2021

DOI:

10.3791/62498

1Université de Strasbourg, INSERM UMR S1255, EFS Grand-EST, 2UMR-S1113 –IRFAC, Université de Strasbourg

ERRATUM NOTICE

Important: There has been an erratum issued for this article. Read more …

This method describes the purification by flow cytometry of MEP and MKp from mice femurs, tibias, and pelvic bones.

Bone marrow megakaryocytes are large polyploid cells that ensure the production of blood platelets. They arise from hematopoietic stem cells through megakaryopoiesis. The final stages of this process are complex and classically involve the bipotent Megakaryocyte-Erythrocyte Progenitors (MEP) and the unipotent Megakaryocyte Progenitors (MKp). These populations precede the formation of bona fide megakaryocytes and, as such, their isolation and characterization could allow for the robust and unbiased analysis of megakaryocyte formation. This protocol presents in detail the procedure to collect hematopoietic cells from mouse bone marrow, the enrichment of hematopoietic progenitors through magnetic depletion and finally a cell sorting strategy that yield highly purified MEP and MKp populations. First, bone marrow cells are collected from the femur, the tibia, and also the iliac crest, a bone that contains a high number of hematopoietic progenitors. The use of iliac crest bones drastically increases the total cell number obtained per mouse and thus contributes to a more ethical use of animals. A magnetic lineage depletion was optimized using 450 nm magnetic beads allowing a very efficient cell sorting by flow cytometry. Finally, the protocol presents the labeling and gating strategy for the sorting of the two highly purified megakaryocyte progenitor populations: MEP (Lin-Sca-1-c-Kit+CD16/32-CD150+CD9dim) and MKp (Lin- Sca-1-c-Kit+CD16/32-CD150+CD9bright). This technique is easy to implement and provides enough cellular material to perform i) molecular characterization for a deeper knowledge of their identity and biology, ii) in vitro differentiation assays, that will provide a better understanding of the mechanisms of maturation of megakaryocytes, or iii) in vitro models of interaction with their microenvironment.

Blood platelets are produced by megakaryocytes. These large polyploid cells are located in the bone marrow and as for all blood cells they are derived from Hematopoietic Stem Cells (HSC)1. The classical pathway of production of megakaryocytes in the bone marrow originates from HSC and involves the generation of different progenitors that progressively restrict their differentiation potential2. The first progenitor signing the commitment to the megakaryocytic lineage is the Megakaryocyte-Erythrocyte Progenitor (MEP), a bipotent progenitor capable of producing both erythroid cells and megakaryocytes3

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Protocols involving animals were performed in accordance with the CREMEAS Committee on the Ethics of Animal Experiments of the University of Strasbourg (Comité Régional d'Ethique en Matière d'Expérimentation Animale Strasbourg. Permit Number: E67-482-10).

1. Mouse bone collection

  1. Sacrifice the animal in compliance with the institutional guidelines.
    NOTE: The data presented in this manuscript were obtained from C57Bl/6 mice of 8 to 12 weeks old. Th.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Phenotypic analysis of the cells identified as MEP and MKp were performed by flow cytometry. Cells were labeled with fluorescence conjugated antibodies to CD41a and CD42c, classical markers of the megakaryocytic and platelet lineages. Both markers were expressed by the cells of the MKp population while these markers are not yet detected at the surface of the cells of the MEP population (Figure 4Ai,4Aii). Polyploidy is a hallmark of megakaryocytes. The DNA content of the sort.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The method described in this paper allows for the extraction and purification of mouse MEP and MKp. An important parameter in the optimization of the protocol was to obtain sufficient number of cells that would be compatible with most molecular- and cellular-based assays. The general practice of mouse bone collection for hematopoietic cell extraction usually consists in harvesting both the femurs and tibias of each mouse. The pelvic bone, another source of hematopoietic material, is thus often overlooked. The reasons for.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors wish to thank Monique Freund, Catherine Ziessel and Ketty for technical assistance. This work was supported by ARMESA (Association de Recherche et Développement en Médecine et Santé Publique), and by Grant ANR-17-CE14-0001-01 to Henri.de la.Salle.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
21-gauge needles BD Microlance 301155
7AAD Sigma-Aldrich A9400
Antibody Gr-1-biotin eBioscience 13-5931-85 Magnetic depletion
Antibody B220-biotin eBioscience 13-0452-85 Magnetic depletion
Antibody Mac-1-biotin eBioscience 13-0112-85 Magnetic depletion
Antibody CD3e-biotin eBioscience 13-0031-85 Magnetic depletion
Antibody CD4-biotin eBioscience 13-9766-82 Magnetic depletion
Antibody CD5-biotin eBioscience 13-0051-85 Magnetic depletion
Antibody CD8a-biotin eBioscience 13-0081-85 Magnetic depletion
Antibody TER119-biotin eBioscience 13-5921-85 Magnetic depletion
Antibody CD127-biotin eBioscience 13-1271-85 Magnetic depletion
Antibody CD45-FITC eBioscience 11-0451-85 Cell sorting
Antibody CD45-PE eBioscience 12-0451-83 Cell sorting
Antibody TER119-APC eBioscience 17-5921-83 Cell sorting
Antibody CD45-PECy7 eBioscience 25-0451-82 Cell sorting
Antibody CD45-biotin eBioscience 13-0451-85 Cell sorting
Antibody CD9-FITC eBioscience 11-0091-82 Cell sorting
Antibody  c-kit-APC eBioscience 17-1171-83 Cell sorting
Antibody Sca-1-PE eBioscience 12-5981-83 Cell sorting
Antibody CD16/32-PE eBioscience 12-0161-83 Cell sorting
Antibody CD150-PECy7 eBioscience 25-1502-82 Cell sorting
Culture medium StemSpan-SFEM Stemcell technologies #09650
Dissection pad Fisher Scientific 10452395
DPBS Life Technologies 14190-094
Ethanol vWR Chemicals 83813.360
Forceps Euronexia P-120-AS
Glass pasteur pipette Dutscher 42011
Magnet :  DynaMag-5 Thermo Fisher Scientific 12303D
Magnetic beads: Dynabeads Sheep Anti-Rat IgG Thermo Fisher Scientific 11035
Megacult Stemcell technologies #04970
MethoCult SF M3436 Stemcell technologies #03436
Newborn Calf Serum Dutscher 50750-500
Red Cell Lysis solution BD Bioscience 555899
Scalpels Fisher Scientific 12308009
Scissors Euronexia C-165-ASB
Sterile 1 mL syringes BD Bioscience 303172
Sterile 15mL tubes Sarstedt 62.554.502
Sterile 5mL polypropylene tubes Falcon 352063
Sterile 5mL polystyrene tubes Falcon 352054
Sterile tubes with 70µm cell strainer cap Falcon 352235
Sterile petri dish Falcon 353003
Streptavidin-APC-Cy7 BD Biosciences 554063 Cell sorting
Tube roller Benchmark Scientific R3005

  1. Kaushansky, K. Historical review: megakaryopoiesis and thrombopoiesis. Blood. 111 (3), 981-986 (2008).
  2. Akashi, K., Traver, D., Miyamoto, T., Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 404 (6774), 193-197 (2000).
  3. Debili, N., et al. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood. 88 (4), 1284-1296 (1996).
  4. Forsberg, E. C., Serwold, T., Kogan, S., Weissman, I. L., Passegué, E. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell. 126 (2), 415-426 (2006).
  5. Vannucchi, A. M., et al. Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice. Blood. 95 (8), 2559-2568 (2000).
  6. Pronk, C. J., et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 1 (4), 428-442 (2007).
  7. Nakorn, T. N., Miyamoto, T., Weissman, I. L. Characterization of mouse clonogenic megakaryocyte progenitors. Proceedings of the National Academy of Sciences of the United States of America. 100 (1), 205-210 (2003).
  8. Ng, A. P., et al. Characterization of thrombopoietin (TPO)-responsive progenitor cells in adult mouse bone marrow with in vivo megakaryocyte and erythroid potential. Proceedings of the National Academy of Sciences of the United States of America. 109 (7), 2364-2369 (2012).
  9. Strassel, C., et al. Hirudin and heparin enable efficient megakaryocyte differentiation of mouse bone marrow progenitors. Experimental Cell Research. 318 (1), 25-32 (2012).
  10. Brouard, N., et al. A unique microenvironment in the developing liver supports the expansion of megakaryocyte progenitors. Blood Advances. 1 (21), 1854-1866 (2017).
  11. Boscher, J., Gachet, C., Lanza, F., Léon, C. Megakaryocyte culture in 3D methylcellulose-based hydrogel to improve cell maturation and study the impact of stiffness and confinement. Journal of Visualized Experiments:JOVE. , (2021).
  12. Sanjuan-Pla, A., et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 502 (7470), 232-236 (2013).
  13. Haas, S., et al. Inflammation-driven fast-track differentiation of HSCs into the megakaryocytic lineage. Experimental Hematology. 42 (8), 14 (2014).
  14. Shin, J. Y., Hu, W., Naramura, M., Park, C. Y. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. The Journal of Experimental Medicine. 211 (2), 217-231 (2014).

Erratum

Erratum: Isolation of Mouse Megakaryocyte Progenitors

An erratum was issued for: Isolation of Mouse Megakaryocyte Progenitors. A figure was updated.

Figure 2 was updated from:

Figure 2
Figure 2: Magnetic depletion of lineage committed (Lin) cells. (A) Schematic representation of the magnetic depletion protocol. First, unsorted bone marrow cells are labeled with the biotin-conjugated rat anti-mouse antibody cocktail. Cells are then incubated with anti-rat Ig coated magnetic beads and subsequently subjected to the magnetic depletion using a strong magnet. The magnet will retain the labeled magnetic Lin+ fraction against the tube walls, while the unlabeled non-magnetic Lin- negative fraction will be collected in a new tube. (B) Lineage committed cells can be identified using fluorescent conjugated streptavidin. Typical analysis of the lineage expression in cells prior to magnetic depletion (total bone marrow) and after magnetic depletion (Lin- Fraction) N = 21. Please click here to view a larger version of this figure.

to:

Figure 2
Figure 2: Magnetic depletion of lineage committed (Lin) cells. (A) Schematic representation of the magnetic depletion protocol. First, unsorted bone marrow cells are labeled with the biotin-conjugated rat anti-mouse antibody cocktail. Cells are then incubated with anti-rat Ig coated magnetic beads and subsequently subjected to the magnetic depletion using a strong magnet. The magnet will retain the labeled magnetic Lin+ fraction against the tube walls, while the unlabeled non-magnetic Lin- negative fraction will be collected in a new tube. (B) Lineage committed cells can be identified using fluorescent conjugated streptavidin. Typical analysis of the lineage expression in cells prior to magnetic depletion (total bone marrow) and after magnetic depletion (Lin- Fraction) N = 21. Please click here to view a larger version of this figure.

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved