A subscription to JoVE is required to view this content. Sign in or start your free trial.
This method describes the purification by flow cytometry of MEP and MKp from mice femurs, tibias, and pelvic bones.
Bone marrow megakaryocytes are large polyploid cells that ensure the production of blood platelets. They arise from hematopoietic stem cells through megakaryopoiesis. The final stages of this process are complex and classically involve the bipotent Megakaryocyte-Erythrocyte Progenitors (MEP) and the unipotent Megakaryocyte Progenitors (MKp). These populations precede the formation of bona fide megakaryocytes and, as such, their isolation and characterization could allow for the robust and unbiased analysis of megakaryocyte formation. This protocol presents in detail the procedure to collect hematopoietic cells from mouse bone marrow, the enrichment of hematopoietic progenitors through magnetic depletion and finally a cell sorting strategy that yield highly purified MEP and MKp populations. First, bone marrow cells are collected from the femur, the tibia, and also the iliac crest, a bone that contains a high number of hematopoietic progenitors. The use of iliac crest bones drastically increases the total cell number obtained per mouse and thus contributes to a more ethical use of animals. A magnetic lineage depletion was optimized using 450 nm magnetic beads allowing a very efficient cell sorting by flow cytometry. Finally, the protocol presents the labeling and gating strategy for the sorting of the two highly purified megakaryocyte progenitor populations: MEP (Lin-Sca-1-c-Kit+CD16/32-CD150+CD9dim) and MKp (Lin- Sca-1-c-Kit+CD16/32-CD150+CD9bright). This technique is easy to implement and provides enough cellular material to perform i) molecular characterization for a deeper knowledge of their identity and biology, ii) in vitro differentiation assays, that will provide a better understanding of the mechanisms of maturation of megakaryocytes, or iii) in vitro models of interaction with their microenvironment.
Blood platelets are produced by megakaryocytes. These large polyploid cells are located in the bone marrow and as for all blood cells they are derived from Hematopoietic Stem Cells (HSC)1. The classical pathway of production of megakaryocytes in the bone marrow originates from HSC and involves the generation of different progenitors that progressively restrict their differentiation potential2. The first progenitor signing the commitment to the megakaryocytic lineage is the Megakaryocyte-Erythrocyte Progenitor (MEP), a bipotent progenitor capable of producing both erythroid cells and megakaryocytes3
Protocols involving animals were performed in accordance with the CREMEAS Committee on the Ethics of Animal Experiments of the University of Strasbourg (Comité Régional d'Ethique en Matière d'Expérimentation Animale Strasbourg. Permit Number: E67-482-10).
1. Mouse bone collection
Phenotypic analysis of the cells identified as MEP and MKp were performed by flow cytometry. Cells were labeled with fluorescence conjugated antibodies to CD41a and CD42c, classical markers of the megakaryocytic and platelet lineages. Both markers were expressed by the cells of the MKp population while these markers are not yet detected at the surface of the cells of the MEP population (Figure 4Ai,4Aii). Polyploidy is a hallmark of megakaryocytes. The DNA content of the sort.......
The method described in this paper allows for the extraction and purification of mouse MEP and MKp. An important parameter in the optimization of the protocol was to obtain sufficient number of cells that would be compatible with most molecular- and cellular-based assays. The general practice of mouse bone collection for hematopoietic cell extraction usually consists in harvesting both the femurs and tibias of each mouse. The pelvic bone, another source of hematopoietic material, is thus often overlooked. The reasons for.......
The authors wish to thank Monique Freund, Catherine Ziessel and Ketty for technical assistance. This work was supported by ARMESA (Association de Recherche et Développement en Médecine et Santé Publique), and by Grant ANR-17-CE14-0001-01 to Henri.de la.Salle.
....Name | Company | Catalog Number | Comments |
21-gauge needles | BD Microlance | 301155 | |
7AAD | Sigma-Aldrich | A9400 | |
Antibody Gr-1-biotin | eBioscience | 13-5931-85 | Magnetic depletion |
Antibody B220-biotin | eBioscience | 13-0452-85 | Magnetic depletion |
Antibody Mac-1-biotin | eBioscience | 13-0112-85 | Magnetic depletion |
Antibody CD3e-biotin | eBioscience | 13-0031-85 | Magnetic depletion |
Antibody CD4-biotin | eBioscience | 13-9766-82 | Magnetic depletion |
Antibody CD5-biotin | eBioscience | 13-0051-85 | Magnetic depletion |
Antibody CD8a-biotin | eBioscience | 13-0081-85 | Magnetic depletion |
Antibody TER119-biotin | eBioscience | 13-5921-85 | Magnetic depletion |
Antibody CD127-biotin | eBioscience | 13-1271-85 | Magnetic depletion |
Antibody CD45-FITC | eBioscience | 11-0451-85 | Cell sorting |
Antibody CD45-PE | eBioscience | 12-0451-83 | Cell sorting |
Antibody TER119-APC | eBioscience | 17-5921-83 | Cell sorting |
Antibody CD45-PECy7 | eBioscience | 25-0451-82 | Cell sorting |
Antibody CD45-biotin | eBioscience | 13-0451-85 | Cell sorting |
Antibody CD9-FITC | eBioscience | 11-0091-82 | Cell sorting |
Antibody c-kit-APC | eBioscience | 17-1171-83 | Cell sorting |
Antibody Sca-1-PE | eBioscience | 12-5981-83 | Cell sorting |
Antibody CD16/32-PE | eBioscience | 12-0161-83 | Cell sorting |
Antibody CD150-PECy7 | eBioscience | 25-1502-82 | Cell sorting |
Culture medium StemSpan-SFEM | Stemcell technologies | #09650 | |
Dissection pad | Fisher Scientific | 10452395 | |
DPBS | Life Technologies | 14190-094 | |
Ethanol | vWR Chemicals | 83813.360 | |
Forceps | Euronexia | P-120-AS | |
Glass pasteur pipette | Dutscher | 42011 | |
Magnet : DynaMag-5 | Thermo Fisher Scientific | 12303D | |
Magnetic beads: Dynabeads Sheep Anti-Rat IgG | Thermo Fisher Scientific | 11035 | |
Megacult | Stemcell technologies | #04970 | |
MethoCult SF M3436 | Stemcell technologies | #03436 | |
Newborn Calf Serum | Dutscher | 50750-500 | |
Red Cell Lysis solution | BD Bioscience | 555899 | |
Scalpels | Fisher Scientific | 12308009 | |
Scissors | Euronexia | C-165-ASB | |
Sterile 1 mL syringes | BD Bioscience | 303172 | |
Sterile 15mL tubes | Sarstedt | 62.554.502 | |
Sterile 5mL polypropylene tubes | Falcon | 352063 | |
Sterile 5mL polystyrene tubes | Falcon | 352054 | |
Sterile tubes with 70µm cell strainer cap | Falcon | 352235 | |
Sterile petri dish | Falcon | 353003 | |
Streptavidin-APC-Cy7 | BD Biosciences | 554063 | Cell sorting |
Tube roller | Benchmark Scientific | R3005 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved