JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

In Vivo Two-photon Imaging of Megakaryocytes and Proplatelets in the Mouse Skull Bone Marrow

Published: July 28th, 2021

DOI:

10.3791/62515

1INSERM, EFS Grand Est, Université de Strasbourg

We describe here the method for imaging megakaryocytes and proplatelets in the marrow of the skull bone of living mice using two-photon microscopy.

Platelets are produced by megakaryocytes, specialized cells located in the bone marrow. The possibility to image megakaryocytes in real time and their native environment was described more than 10 years ago and sheds new light on the process of platelet formation. Megakaryocytes extend elongated protrusions, called proplatelets, through the endothelial lining of sinusoid vessels. This paper presents a protocol to simultaneously image in real time fluorescently labeled megakaryocytes in the skull bone marrow and sinusoid vessels. This technique relies on a minor surgery that keeps the skull intact to limit inflammatory reactions. The mouse head is immobilized with a ring glued to the skull to prevent movements from breathing.

Using two-photon microscopy, megakaryocytes can be visualized for up to a few hours, enabling the observation of cell protrusions and proplatelets in the process of elongation inside sinusoid vessels. This allows the quantification of several parameters related to the morphology of the protrusions (width, length, presence of constriction areas) and their elongation behavior (velocity, regularity, or presence of pauses or retraction phases). This technique also allows simultaneous recording of circulating platelets in sinusoid vessels to determine platelet velocity and blood flow direction. This method is particularly useful to study the role of genes of interest in platelet formation using genetically modified mice and is also amenable to pharmacological testing (study the mechanisms, evaluating drugs in the treatment of platelet production disorders). It has become an invaluable tool, especially to complement in vitro studies as it is now known that in vivo and in vitro proplatelet formation rely on different mechanisms. It has been shown, for example, that in vitro microtubules are required for proplatelet elongation per se. However, in vivo, they rather serve as a scaffold, elongation being mainly promoted by blood flow forces.

Platelets are produced by megakaryocytes-specialized cells located in the bone marrow. The precise way megakaryocytes release platelets in the circulation has long remained unclear owing to the technical challenge in observing real-time events through the bone. Two-photon microscopy has helped overcome this challenge and led to major advances in understanding the platelet formation process. The first in vivo megakaryocyte observations were made by von Andrian and colleagues in 2007, with the visualization of fluorescent megakaryocytes through the skull1. This was possible because the bone layer in the frontoparietal skull of young adul....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal experiments were performed in accordance with European standards 2010/63/EU and the CREMEAS Committee on the Ethics of Animal Experiments of the University of Strasbourg (Comité Régional d'Ethique en Matière d'Expérimentation Animale Strasbourg, Animal Facility agreement N°: G67-482-10, project agreement N°: 2018061211274514).

1. Preparation of mice and insertion of a catheter in the jugular vein

NOTE: Here, male or fem.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using this protocol, the fluorescent tracer, Qtracker-655, was intravenously administered to image anastomosed marrow sinusoid vessels in the skull bone marrow and the flow direction as depicted by the arrows (Figure 4A, left). Using mTmG mice, eGFP-fluorescent platelets were recorded over 20 s in each vessel branch, and their velocity was measured using ImageJ and GNU Octave software (Figure 4A, right). Note the heterogeneity in flow velocity and direction. Sin.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The mechanisms of platelet formation are highly dependent on the bone marrow environment. Hence, intravital microscopy has become an important tool in the field to visualize the process in real-time. Mice with fluorescent megakaryocytes can be obtained by crossing mice expressing the Cre recombinase in megakaryocytes with any floxed reporter mice containing a conditional fluorescent gene expression cassette. Here, mTmG reporter mice were used (B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo10) cro.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Florian Gaertner (Institute of Science and Technology Austria, Klosterneuburg, Austria) for his expert advice on two-photon microscopy experiments at the time when we established the technique in the lab, and Yves Lutz at the Imaging Center IGBMC /CBI (Illkirch, France) for his expertise and help with the two-photon microscope. We also thank Jean-Yves Rinkel for his technical help and Ines Guinard for the drawing of the schema in Figure 1. We thank ARMESA (Association de Recherche et Développement en Médecine et Santé Publique) for its support in the acquisition of the two-photon microscope. AB was supported by post-docto....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
GNU Octave software GNU Project https://www.gnu.org/software/octave/
 Histoacryl 5 x 0, 5 mL Braun 1050052 injectable solution of surgical glue
HyD hybrid detectors Leica Microsystems 4tunes Leica Microsystems
ImageJ GNU project Minimum version required
Imalgene/Ketamine 1000 fl/10 mL Boehring 03661103003199 eye protection
Leica SP8 MP DIVE microscope equipped with a 25x water objective, numerical aperture of 0.95 Leica Microsystems simultaneous excitation of AlexaFluor-488 and Qtracker-655
Matlab MathWorks https://www.mathworks.com/
Ocrygel 10 g Laboratoires T.V.M. 03700454505621 Silicon dental paste blue and yellow
Picodent twinsin speed Rotec 13001002
Qtracker 655 vascular label Invitrogen Q21021MP injectable solution
Resonant scanner, 8 or 12 kHz
Rompun Xylazine 2% fl/25 mL Bayer 04007221032311
Superglue gel to glue the ring to the bone
Surflo IV catheter - Blue 22 G Terumo SR-OX2225C1
Ti:Saph pulsing laser (Coherent) (femtosecond) Coherent

  1. Junt, T., et al. Dynamic visualization of thrombopoiesis within bone marrow. Science. 317 (5845), 1767-1770 (2007).
  2. Mazo, I. B., et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. Journal of Experimenal Medicine. 188 (3), 465-474 (1998).
  3. Bornert, A., et al. Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation. Haematologica. , (2020).
  4. Zhang, L., et al. Sphingosine kinase 2 (Sphk2) regulates platelet biogenesis by providing intracellular sphingosine 1-phosphate (S1P). Blood. 122 (5), 791-802 (2013).
  5. Kowata, S., et al. Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thrombosis and Haemostasis. 112 (4), 743-756 (2014).
  6. Nishimura, S., et al. IL-1alpha induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. Journal of Cell Biology. 209 (3), 453-466 (2015).
  7. Lefrancais, E., et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 544 (7648), 105-109 (2017).
  8. Potts, K. S., et al. Membrane budding is a major mechanism of in vivo platelet biogenesis. Journal of Experimental Medicine. 217 (9), 20191206 (2020).
  9. Scott, M. K., Akinduro, O., Lo Celso, C. In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow. Journal of Visualized Experiments: JoVE. (91), e51683 (2014).
  10. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45 (9), 593-605 (2007).
  11. Tiedt, R., Schomber, T., Hao-Shen, H., Skoda, R. C. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood. 109 (4), 1503-1506 (2007).
  12. Pertuy, F., et al. Broader expression of the mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage. Journal of Thrombosis and Haemostasis. 13 (1), 115-125 (2015).
  13. Calaminus, S. D., et al. Lineage tracing of Pf4-Cre marks hematopoietic stem cells and their progeny. PLoS One. 7 (12), 51361 (2012).
  14. Stegner, D., et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nature Communications. 8 (1), 127 (2017).
  15. Drew, P. J., Blinder, P., Cauwenberghs, G., Shih, A. Y., Kleinfeld, D. Rapid determination of particle velocity from space-time images using the Radon transform. Journal of Computational Neuroscience. 29 (1-2), 5-11 (2010).
  16. Nakagawa, T., et al. Ketamine suppresses platelet aggregation possibly by suppressed inositol triphosphate formation and subsequent suppression of cytosolic calcium increase. Anesthesiology. 96 (5), 1147-1152 (2002).
  17. Kim, S., Lin, L., Brown, G. A. J., Hosaka, K., Scott, E. W. Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment. Leukemia. 31 (7), 1582-1592 (2017).
  18. Kohler, A., Geiger, H., Gunzer, M. Imaging hematopoietic stem cells in the marrow of long bones in vivo. Methods in Molecular Biology. 750, 215-224 (2011).
  19. Lewandowski, D., et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood. 115 (3), 443-452 (2010).
  20. Reismann, D., et al. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nature Communications. 8 (1), 2153 (2017).
  21. Chen, Y., Maeda, A., Bu, J., DaCosta, R. Femur window chamber model for in vivo cell tracking in the murine bone marrow. Journal of Visualized Experiments: JoVE. (113), e542205 (2016).
  22. Guesmi, K., et al. Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light Science & Applications. 7, 12 (2018).
  23. Wang, T., et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nature Methods. 15 (10), 789-792 (2018).
  24. Kim, J., Bixel, M. G. Intravital multiphoton imaging of the bone and bone marrow environment. Cytometry A. 97 (5), 496-503 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved