JoVE Logo
Faculty Resource Center

Sign In

Abstract

Bioengineering

Modulating Shape of Polyester Based Polymersomes using Osmotic Pressure

Published: April 21st, 2021

DOI:

10.3791/62548

1Department of Chemical and Biomolecular Engineering, Clemson University, 2Department of Biological Sciences, Clemson University, 3Department of Bioengineering, Clemson University

Polymersomes are membrane-bound, bilayer vesicles created from amphiphilic block copolymers that can encapsulate both hydrophobic and hydrophilic payloads for drug delivery applications. Despite their promise, polymersomes are limited in application due to their spherical shape, which is not readily taken up by cells, as demonstrated by solid nanoparticle scientists. This article describes a salt-based method for increasing the aspect ratios of spherical poly(ethylene glycol) (PEG)- based polymersomes. This method can elongate polymersomes and ultimately control their final shape by adding sodium chloride in post-formation dialysis. Salt concentration can be varied, as described in this method, based on the hydrophobicity of the block copolymer being used as the base for the polymersome and the target shape. Elongated nanoparticles have the potential to better target the endothelium in larger diameter blood vessels, like veins, where margination is observed. This protocol can expand therapeutic nanoparticle applications by utilizing elongation techniques in tandem with the dual-loading, long-circulating benefits of polymersomes.

Tags

Keywords Polyester

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved