A subscription to JoVE is required to view this content. Sign in or start your free trial.
This manuscript describes how to assess in vivo immunogenicity of tumor cell-derived extracellular vesicles (EVs) using flow cytometry. EVs derived from tumors undergoing treatment-induced immunogenic cell death seem particularly relevant in tumor immunosurveillance. This protocol exemplifies the assessment of oxaliplatin-induced immunostimulatory tumor EVs but can be adapted to various settings.
Immunogenic cell death of tumors, caused by chemotherapy or irradiation, can trigger tumor-specific T cell responses by releasing danger-associated molecular patterns and inducing the production of type I interferon. Immunotherapies, including checkpoint inhibition, primarily rely on preexisting tumor-specific T cells to unfold a therapeutic effect. Thus, synergistic therapeutic approaches that exploit immunogenic cell death as an intrinsic anti-cancer vaccine may improve their responsiveness. However, the spectrum of immunogenic factors released by cells under therapy-induced stress remains incompletely characterized, especially regarding extracellular vesicles (EVs). EVs, nano-scale membranous particles emitted from virtually all cells, are considered to facilitate intercellular communication and, in cancer, have been shown to mediate cross-priming against tumor antigens. To assess the immunogenic effect of EVs derived from tumors under various conditions, adaptable, scalable, and valid methods are sought-for. Therefore, herein a relatively easy and robust approach is presented to assess EVs' in vivo immunogenicity. The protocol is based on flow cytometry analysis of splenic T cells after in vivo immunization of mice with EVs, isolated by precipitation-based assays from tumor cell cultures under therapy or steady-state conditions. For example, this work shows that oxaliplatin exposure of B16-OVA murine melanoma cells resulted in the release of immunogenic EVs that can mediate the activation of tumor-reactive cytotoxic T cells. Hence, screening of EVs via in vivo immunization and flow cytometry identifies conditions under which immunogenic EVs can emerge. Identifying conditions of immunogenic EV release provides an essential prerequisite to testing EVs' therapeutic efficacy against cancer and exploring the underlying molecular mechanisms to ultimately unveil new insights into EVs' role in cancer immunology.
The immune system plays a pivotal role in the fight against cancer, both when incited by immune checkpoint inhibition and for the efficacy of conventional cancer therapies. Tumor cells succumbing to genotoxic therapies such as the chemotherapeutic agents oxaliplatin and doxorubicin, or ionizing radiation treatment can release antigens and danger-associated molecular patterns (DAMPs) that potentially initiate an adaptive anti-tumor immune response1. The most prominent DAMPs, in the context of immunogenic cell death, include find-me signals such as chemotactic ATP, eat-me signals such as the exposure of calreticulin, that promotes tumor cell upta....
At the onset of experiments, mice were at least 6 weeks of age and were maintained under specific pathogen-free conditions. The present protocol complies with the Institutional ethical standards and prevailing local regulations. Animal studies were approved by the local regulatory agency (Regierung von Oberbayern, Munich, Germany). Possible sex-related biases were not investigated in these studies.
1. Generation and isolation of EVs derived from tumor cells after chemotherapy exposure
This protocol is intended to facilitate the straightforward and easily reproducible assessment of the immunogenicity of tumor-derived EVs. Hereby, mice are inoculated with EVs derived from in vitro cultures of tumor cells expressing the model antigen chicken ovalbumin (OVA). The subsequent immune response is analyzed in splenic T cells via flow cytometry.
Figure 1 gives an overview of the practical steps of the entire protocol. Since the work foc.......
This protocol provides an immunological in vivo assessment of EVs derived from melanoma cells under chemotherapy-induced stress while adapting to EVs emitted from various cancers under various treatments. Immunizing mice with EVs derived from oxaliplatin-treated B16-OVA cells, for instance, expands IFN-γ-producing CD8+ T cells in the spleen, which are further stimulated by ex vivo incubation with ovalbumin, indicating a tumor-specific immune response. Thus, detection of immunogenic EVs b.......
This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 360372040 - SFB 1335 and Projektnummer 395357507 - SFB 1371 (to H.P.), a Mechtild Harf Research Grant from the DKMS Foundation for Giving Life (to H.P.) a Young Investigator Award by the Melanoma Research Alliance (to S.H.), a scholarship by the Else-Kröner-Fresenius-Stiftung (to F.S.), a Seed Fund by the Technical University Munich (to S.H.) and a research grant by the Wilhelm Sander Foundation (2021.041.1, to S.H.). H. P. is supported by the EMBO Young Investigator Program.
AUTHOR CONTRIBUTIONS:
Name | Company | Catalog Number | Comments |
Anti-CD3 FITC | Biolegend | 100204 | Clone 17A2 |
Anti-CD4 PacBlue | Biolegend | 100428 | Clone GK1.5 |
Anti-CD8 APC | Biolegend | 100712 | Clone 53-6.7 |
Anti-IFNγ PE | eBioscience | RM90022 | Clone XMG1.2 |
Brefeldin A | Biolegend | 420601 | Brefeldin A Solution (1,000x) |
Cell Strainer, 100 µm | Greiner | 542000 | EASYstrainer 100 µm |
DMEM | Sigma-Aldrich | D6429 | Dulbecco's Modified Eagle's Medium with D-glucose (4.5 g/L) and L-glutamine (4 mM) |
FBS Good Forte | PAN BIOTECH | P40-47500 | Fetal Calf Serum (FCS) |
Fixable Viability Dye eFluor 506 | eBioscience, division of Thermo Fischer Scientific | 65-0866-14 | |
Fixation/Permeabilization Concentrate | eBioscience | 00-5123-43 | Fixation/Permeabilization Concentrate (10x) |
Fixation/Permeabilization Diluent | eBioscience | 00-5223-56 | |
Ionomycin | Sigma-Aldrich | 407952 | From Streptomyces conglobatus - CAS 56092-82-1, ≥ 97% (HPLC) |
L-Glutamine | Gibco | 25030-032 | L-Glutamine (200 mM) |
Ovalbumin | InvivoGen | vac-pova | Ovalbumine with < 1 EU/mg endotoxin - CAS 9006-59-1 |
Oxaliplatin | Pharmacy of MRI hospital | ||
PBS | Sigma-Aldrich | D8537 | Phosphate Buffered Saline without calcium chloride and magnesium chloride |
Penicillin-Streptomycin | Gibco | 1514-122 | Mixture of penicillin (10,000 U/mL) and streptomycin (10,000 ug/mL) |
PMA | Sigma-Aldrich | P1585 | Phorbol 12-myristate 13-acetate, ≥ 99% (HPLC) |
PVDF filter, 0,22 µm, for syringes | Merck Millipore | SLGV033RS | Millex-GV Filter Unit 0.22 µm Durapore PVDF Membrane |
Red Blood Cell Lysis Buffer | Invitrogen | 00-4333-57 | |
RPMI 1640 | Thermo Fischer Scientific | 11875 | Roswell Park Memorial Institute 1640 Medium with D-glucose (2.00 g/L) and L-glutamine (300 mg/L), without HEPES |
Syringe, 26 G | BD Biosciences | 305501 | 1 mL Sub-Q Syringes with needle (0.45 mm x 12.7 mm) |
Total Exosome Isolation Reagent | Invitrogen | 4478359 | For isolation from cell culture media |
β-Mercaptoethanol | Thermo Fischer Scientific | 31350 | β-Mercaptoethanol (50 mM) |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved