A subscription to JoVE is required to view this content. Sign in or start your free trial.
These protocols will help users probe mitochondrial energy metabolism in 3D cancer cell-line-derived spheroids using Seahorse extracellular flux analysis.
Three-dimensional (3D) cellular aggregates, termed spheroids, have become the forefront of in vitro cell culture in recent years. In contrast to culturing cells as two-dimensional, single-cell monolayers (2D culture), spheroid cell culture promotes, regulates, and supports physiological cellular architecture and characteristics that exist in vivo, including the expression of extracellular matrix proteins, cell signaling, gene expression, protein production, differentiation, and proliferation. The importance of 3D culture has been recognized in many research fields, including oncology, diabetes, stem cell biology, and tissue engineering. Over the last decade, improved methods have been developed to produce spheroids and assess their metabolic function and fate.
Extracellular flux (XF) analyzers have been used to explore mitochondrial function in 3D microtissues such as spheroids using either an XF24 islet capture plate or an XFe96 spheroid microplate. However, distinct protocols and the optimization of probing mitochondrial energy metabolism in spheroids using XF technology have not been described in detail. This paper provides detailed protocols for probing mitochondrial energy metabolism in single 3D spheroids using spheroid microplates with the XFe96 XF analyzer. Using different cancer cell lines, XF technology is demonstrated to be capable of distinguishing between cellular respiration in 3D spheroids of not only different sizes but also different volumes, cell numbers, DNA content and type.
The optimal mitochondrial effector compound concentrations of oligomycin, BAM15, rotenone, and antimycin A are used to probe specific parameters of mitochondrial energy metabolism in 3D spheroids. This paper also discusses methods to normalize data obtained from spheroids and addresses many considerations that should be considered when exploring spheroid metabolism using XF technology. This protocol will help drive research in advanced in vitro spheroid models.
Advances in in vitro models in biological research have rapidly progressed over the last 20 years. Such models now include organ-on-a-chip modalities, organoids, and 3D microtissue spheroids, all of which have become a common focus to improve the translation between in vitro and in vivo studies. The use of advanced in vitro models, particularly spheroids, spans several research fields, including tissue engineering, stem cell research, cancer, and disease biology1,2,3,4,5<....
Figure 1: Graphical workflow for the generation of cellular spheroids, extracellular flux analysis and downstream assays. Four cancer cell lines were selectively cultured as monolayers (A), detached from tissue culture flasks, and seeded into ultralow attachment 96-well microplates to form spheroids (B). A549 l.......
To obtain well-formed, compact spheroids, each cell line was optimized individually for seeding density and duration of cultivation (Figure 3). A549, HepG2/C3A, and SK-OV-3 cell lines initially formed loose aggregates that did not progress to round spheroids with clearly defined perimeters until after 7 days in culture. Conversely, MCF-7 cells could form spheroids within 3 days. There was a clear correlation between the initial cell seeding density and spheroid volume after the culture perio.......
Main findings and outputs
This paper provides a detailed protocol to probe mitochondrial energy metabolism of single 3D spheroids using a series of cancer-derived cell lines with the XFe96 XF Analyzer. A method is developed and described for the rapid cultivation of A549, HepG2/C3A, MCF7, and SK-OV-3 cellular spheroids using cell-repellent technologies for forced aggregation. This protocol addresses many considerations of probing spheroid metabolism with XF technology, including (1) optimizati.......
N.J.C was supported by a BBSRC MIBTP CASE Award with Sygnature Discovery Ltd (BB/M01116X/1, 1940003)
....Name | Company | Catalog Number | Comments |
A549 | ECACC | #86012804 | Lung carcinoma cell line |
Agilent Seahorse XF RPMI Medium, pH 7.4 | Agilent Technologies Inc. | 103576-100 | XF assay medium with 1 mM HEPES, without phenol red, sodium bicarbonate, glucose, L-glutamine, and sodium pyruvate |
Agilent Seahorse XFe96 Extracellular Flux Analyzer | Agilent Technologies Inc. | - | Instrument for measuring rates of spheroid oxygen uptake in single spheroids |
Antimycin A | Merck Life Science | A8674 | Mitochondrial respiratory complex III inhibitor |
BAM15 | TOCRIS bio-techne | 5737 | Mitochondrial protnophore uncoupler |
Black-walled microplate | Greiner Bio-One | 655076 | For fluorescence-based assays |
CELLSTAR cell-repellent surface 96 U well microplates | Greiner Bio-One | 650970 | Microplates for generating spheroids |
CellTiter-Glo 3D Cell Viability Assay | Promega | G9681 | Assay for the determination of cell viability in 3D microtissue spheroids |
Cultrex Poly-D-Lysine | R&D Systems a biotechne brand | 3439-100-01 | Molecular cell adhesive for coating XFe96 spheroid microplates to facillitate attachment of spheroids |
D-(+)-Glucose | Merck Life Sciences | G8270 | Supplement for cell culture growth and XF assay medium |
Dulbecco’s Modified Eagle Medium (DMEM) | Gibco | 11885084 | Culture medium for HepG2/C3A spheroids |
EVOS XL Core Imaging System | Thermo Fisher Scientific | AMEX1000 | Phase-contrast imaging microscope |
EZ-PCR Mycoplasma test kit | Biological Industries | 20-700-20 | Mycoplasma screening in cell cultures |
FIJI Is Just Image J | Analysis of collated images | ||
Foetal bovine serum | Merck Life Science | F7524 | Supplement for cell culture medium |
HepG2/C3A | ATCC | #CRL-10741 | Hepatic carcinoma cell line, a clonal derivative of the parent HepG2 cell line |
Lactate-Glo | Promega | J5021 | Assay for measurement of lactate within spheorid culture medium |
L-glutamine (200 mM solution) | Merk Life Sciences | G7513 | Supplement for cell culture growth and XF assay medium |
M50 Stereo microscope | Leica Microsytems | LEICAM50 | Stereo dissection micrscope; used for spheorid handling |
MCF-7 | ECACC | #86012803 | Breast adenocarcinoma cell line |
Oligomycin from Streptomyces diastatochromogenes | Merck Life Science | O4876 | ATP Synthase Inhibitor |
Penicilin-Streptomycin | Gibco | 15140122 | Antibiotics added to cell culture medium |
Quant-iT PicoGreen dsDNA Assay Kit | Initrogen | P7589 | Analysis of dsDNA in spehroids |
Rotenone | Merck Life Science | R8875 | Mitochondrial Respiratory Complex I Inhibitor |
RPMI 1640 | Gibco | 21875091 | Culture medium for A549, MCF7, and SK-OV-3 spheroids |
Seahorse Analytics | Agilent Technologies Inc. | Build 421 | https://seahorseanalytics.agilent.com |
Seahorse XFe96 Spheroid FluxPak | Agilent Technologies Inc. | 102905-100 | Each Seahorse XFe96 Spheroid FluxPak contains: 6 Seahorse XFe96 Spheroid Microplates (102978-100), 6 XFe96 sensor cartridges, and 1 bottle of Seahorse XF Calibrant Solution 500 mL (100840-000) |
Serological pipette: 5, 10, and 25 mL | Greiner Bio-One | 606107; 607107; 760107 | Consumables for cell culture |
SK-OV-3 | ECACC | #HTB-77 | Ovarian adenocarcinoma cell line |
Sodium pyruvate (100 mM solution) | Merck Life Science | S8636 | Supplement for cell culture growth and XF assay medium |
T75 cm2 cell culture flask | Greiner Bio-One | 658175 | Tissue culture treated flasks for maintaining cell cultures |
TrypLExpress | Gibco | 12604-021 | Cell dissociation reagent |
Wave controller software | Agilent Technologies Inc. | - | |
Wide orifice tip | STARLAB International GmbH | E1011-8400 | Pipette tips with wide opening for spheroid handling |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved