A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, a TIRF microscopy-based in vitro reconstitution assay is presented to simultaneously quantify and compare the dynamics of two microtubule populations. A method is described to simultaneously view the collective activity of multiple microtubule-associated proteins on crosslinked microtubule bundles and single microtubules.
Microtubules are polymers of αβ-tubulin heterodimers that organize into distinct structures in cells. Microtubule-based architectures and networks often contain subsets of microtubule arrays that differ in their dynamic properties. For example, in dividing cells, stable bundles of crosslinked microtubules coexist in close proximity to dynamic non-crosslinked microtubules. TIRF-microscopy-based in vitro reconstitution studies enable the simultaneous visualization of the dynamics of these different microtubule arrays. In this assay, an imaging chamber is assembled with surface-immobilized microtubules, which are either present as single filaments or organized into crosslinked bundles. Introduction of tubulin, nucleotides, and protein regulators allows direct visualization of associated proteins and of dynamic properties of single and crosslinked microtubules. Furthermore, changes that occur as dynamic single microtubules organize into bundles can be monitored in real-time. The method described here allows for a systematic evaluation of the activity and localization of individual proteins, as well as synergistic effects of protein regulators on two different microtubule subsets under identical experimental conditions, thereby providing mechanistic insights that are inaccessible by other methods.
Microtubules are biopolymers that form structural scaffolds essential for multiple cellular processes, ranging from intracellular transport and organelle positioning to cell division and elongation. To execute these diverse functions, individual microtubules are organized into micron-sized arrays, such as mitotic spindles, ciliary axonemes, neuronal bundles, interphase arrays, and plant cortical arrays. A ubiquitous architectural motif found in these structures is a bundle of microtubules crosslinked along their lengths1. An intriguing feature of several microtubule-based structures is the coexistence of bundled microtubules and non-crosslinked....
1. Prepare reagents
Solution | Components | Recommended Storage Duration | Notes |
The experiment described above was performed using 647 nm fluorophore-labeled biotinylated microtubules, 560 nm fluorophore-labeled non-biotinylated microtubules, and 560 nm fluorophore-labeled soluble tubulin mix. Microtubules were crosslinked by the crosslinker protein PRC1 (GFP-labeled). After surface-immobilized bundles and single microtubules were generated (step 5.11), the imaging chamber was mounted on a TIRF 100X 1.49 NA oil objective and viewed in the 560 nm and 647 nm fluorescence channels. Single microtubules .......
The experiment described here significantly expands the scope and complexity of conventional microtubule reconstitution assays, which are traditionally performed on single microtubules or on one type of array. The current assay provides a method to simultaneously quantify and compare the regulatory MAP activity on two populations, namely, single microtubules and crosslinked bundles. Further, this assay allows for the examination of two types of bundles: those that are pre-formed from stable seeds before the initiation of.......
This work was supported by a grant from the NIH (no. 1DP2GM126894-01), and by funds from the Pew Charitable Trusts and the Smith Family Foundation to R.S. The authors thank Dr. Shuo Jiang for his contribution toward development and optimization of the protocols.
....Name | Company | Catalog Number | Comments |
(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) | Sigma Aldrich | 238813 | |
1,4-piperazinediethanesulfonic acid (PIPES) | Sigma Aldrich | P6757 | |
18x18 mm #1.5 coverslips | Electron Microscopy Sciences | 63787 | |
2-Mercaptoethanol (BME) | Sigma Aldrich | M-6250 | |
24x60 mm #1.5 coverslips | Electron Microscopy Sciences | 63793 | |
405/488/560/647 nm Laser Quad Band | Chroma | TRF89901-NK | |
Acetone | Sigma Aldrich | 320110 | |
Adenosine 5'-triphosphate disodium salt hydrate (ATP) | Sigma Aldrich | A7699-5G | |
Avidin, NeutrAvidin® Biotin-binding Protein (Molecular Probes®) | Thermo Fischer Scientific | A2666 | |
Bath sonicator: Branson 2800 Cleaner | Branson | CPX2800H | |
Beckman Coulter Polycarbonate Thickwall Tubes, 11 x 34 mm | Beckman-Coulter | 343778 | |
Beckman Coulter Polycarbonate Thickwall Tubes, 8 x 34 mm | Beckman-Coulter | 343776 | |
Biotin-PEG-SVA, MW 5,000 | Laysan Bio | #Biotin-PEG-SVA-5000 | |
Bovine Serum Albumin (BSA) | Sigma Aldrich | 2905 | |
Catalase | Sigma Aldrich | C40 | |
Corning LSE Mini Microcentrifuge, AC100-240V | Corning | 6670 | |
Delicate Task Wipes | Kimtech | 34120 | |
Dithiothreitol (DTT) | GoldBio | DTT10 | |
Emission filter | Chroma | ET610/75m | |
Ethanol (200-proof) | Decon Labs | 2705 | |
Ethylene glycol tetraacetic acid (EGTA) | Sigma Aldrich | 3777 | |
Glucose Oxidase | Sigma Aldrich | G2133 | |
GMPCPP | Jena Bioscience | NU-405 | |
Guanosine 5'-triphosphate sodium salt hydrate (GTP) | Sigma Aldrich | G8877 | |
Hellmanex III detergent | Sigma Aldrich | Z805939 | |
Immersion oil, Type A | Fisher Scientific | 77010 | |
Kappa-casein | Sigma Aldrich | C0406 | |
Lanolin | Fisher Scientific | S25376 | |
Lens Cleaning Tissue | ThorLabs | MC-5 | |
Magnesium Chloride (MgCl2) | Sigma Aldrich | M9272 | |
Methylcellulose | Sigma Aldrich | M0512 | |
Microfuge 16 Benchtop Centrifuge | Beckman-Coulter | A46474 | |
Microscope Slides, Diamond White Glass, 25 x 75mm, 90° Ground Edges, WHITE Frosted | Globe Scientific | 1380-50W | |
mPEG-Succinimidyl Valerate, MW 5,000 | Laysan Bio | #NH2-PEG-VA-5K | |
Optima™ Max-XP Tabletop Ultracentrifuge | Beckman-Coulter | 393315 | |
Paraffin | Fisher Scientific | P31-500 | |
PELCO Reverse (self-closing), Fine Tweezers | Ted Pella | 5377-NM | |
Petrolatum, White | Fisher Scientific | 18-605-050 | |
Plasma Cleaner, 115V | Harrick Plasma | PDC-001 | |
Potassium Hydroxide (KOH) | Sigma Aldrich | 221473 | |
Sodium bicarbonate | Sigma Aldrich | S6014 | |
Sucrose | Sigma Aldrich | S7903 | |
Thermal-Lok 1-Position Dry Heat Bath | USA Scientific | 2510-1101 | |
Thermal-Lok Block for 1.5 and 2.0 mL Tubes | USA Scientific | 2520-0000 | |
Thermo Scientific™ Pierce™ Bond-Breaker™ TCEP Solution, Neutral pH; 500mM | Thermo Fischer Scientific | PI-77720 | |
TIRF 100X NA 1.49 Oil Objective | Nikon | CFI Apochromat TIRF 100XC Oil | |
TIRF microscope | Nikon | Eclipse Ti | |
TLA 120.1 rotor | Beckman-Coulter | 362224 | |
TLA 120.2 rotor | Beckman-Coulter | 357656 | |
Tubulin protein (>99% pure): porcine brain | Cytoskeleton | T240 | |
Tubulin Protein (Biotin): Porcine Brain | Cytoskeleton | T333P | |
Tubulin protein (fluorescent HiLyte 647): porcine brain | Cytoskeleton | TL670M | |
Tubulin protein (X-rhodamine): bovine brain | Cytoskeleton | TL620M | |
VECTABOND® Reagent, Tissue Section Adhesion | Vector Biolabs | SP-1800-7 | |
VWR® Personal-Sized Incubator, 120V, 50/60Hz, 0.6A | VWR | 97025-630 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved