Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The chorioallantoic membrane (CAM) of the avian embryo is a very useful and applicable tool for various areas of research. A special ex ovo model of Japanese quail CAM is suitable for photodynamic treatment investigation.

Abstract

The chorioallantoic membrane (CAM) of an avian embryo is a thin, extraembryonic membrane that functions as a primary respiratory organ. Its properties make it an excellent in vivo experimental model to study angiogenesis, tumor growth, drug delivery systems, or photodynamic diagnosis (PDD) and photodynamic therapy (PDT). At the same time, this model addresses the requirement for the replacement of experimental animals with a suitable alternative. Ex ovo cultivated embryo allows easy substance application, access, monitoring, and documentation. The most frequently used is chick CAM; however, this article describes the advantages of the Japanese quail CAM as a low-cost and high-throughput model. Another advantage is the shorter embryonic development, which allows higher experimental turnover. The suitability of quail CAM for PDD and PDT of cancer and microbial infections is explored here. As an example, the use of the photosensitizer hypericin in combination with lipoproteins or nanoparticles as a delivery system is described. The damage score from images in white light and changes in fluorescence intensity of the CAM tissue under violet light (405 nm) was determined, together with analysis of histological sections. The quail CAM clearly showed the effect of PDT on the vasculature and tissue. Moreover, changes like capillary hemorrhage, thrombosis, lysis of small vessels, and bleeding of larger vessels could be observed. Japanese quail CAM is a promising in vivo model for photodynamic diagnosis and therapy research, with applications in studies of tumor angiogenesis, as well as antivascular and antimicrobial therapy.

Introduction

The chicken chorioallantoic membrane (CAM) model is well known and widely used in various areas of research. It is a richly vascularized extraembryonic organ that provides gas exchange and mineral transport1. Due to the transparency and accessibility of this membrane, individual blood vessels and their structural changes can be observed in real time2. Despite the advantages, chick CAM also has some limitations (e.g., larger breeding facilities, egg production, and feed consumption) that could be avoided by using other avian species. In this protocol, an alternative ex ovo CAM model using Japanese quail (Cotu....

Protocol

The research was performed in compliance with institutional guidelines. All equipment and reagents must be autoclaved or sterilized with 70% ethanol or UV light.

1. Egg incubation

  1. Store fertilized quail eggs at 10-15 °C for a maximum of 4-5 days before starting incubation. Use only clean and undamaged eggs.
  2. Incubate the eggs in a forced draught incubator for ~ 53-54 h. Lay the eggs horizontally with the egg rotation switched off, at 50%-60% humidity .......

Representative Results

The localization of the tumor on the CAM surface is difficult in white light. Photosensitizer (here, hypericin) used in PDD is expected to be taken up selectively by the tumor and helps visualize the tumor. The addition of hypericin and the use of fluorescent light (e.g., 405 nm) showed the tumor (squamous cell carcinoma TE1) position very well (Figure 6A). Histological analysis showed vital tumor cells invading healthy tissues. Concentric structures of abnormal squamous cells, often de.......

Discussion

For successful ex ovo cultivation, it is important to follow the protocol above. Moreover, if the eggs are not opened carefully enough or there is insufficient humidity during the cultivation, the yolk sack sticks to the shell and often ruptures. The start of an ex ovo cultivation at the time of about 60 h of egg incubation ensures the high survival rate of the embryos, as they are already large enough to survive the handling. At the later developmental stages, the CAM becomes thinner and adheres to the.......

Acknowledgements

The work was supported by VEGA 2/0042/21 and APVV 20-0129. The contribution of V. Huntošová is the result of the project implementation: Open scientific community for modern interdisciplinary research in medicine (Acronym: OPENMED), ITMS2014+: 313011V455 supported by the Operational Program Integrated Infrastructure, funded by the ERDF.

....

Materials

NameCompanyCatalog NumberComments
6-Well Cell Culture PlateSarstedt83.392Transparent polystyrene, sterile
CO2 Incubator ESCO CCL-0508ESCO, SingaporeCCL-050B-8CO2 cell culture incubator
cryocut Leica CM 1800Reichert-Jung, USA
digital camera Canon EOS 6D IICanon, Japan
diode laser 405 nmOcean Optics, USA
DMSOSigma-Aldrich67-68-5dimethyl sulfoxid
eosinSigma-Aldrich15086-94-9
ethanolSigma-Aldrich64-17-5
fine brush size 2Faber-Castell281802brush for CAM separation and manipulation
glutaraldehydeSigma-Aldrich111-30-8
hematoxylinSigma-Aldrich517-28-2
hypericinSigma-Aldrich84082-80-4
incubator Bios MidiBios Sedlfigure-materials-1519any, Czech RepublicForced draught incubator for initial incubation
incubator Memmert IF160Memmert, GermanyForced air circulation incubator for CAM incubation
Kaiser slimlite plano, LED light boxKaiser, Germany2453Transilluminator
LED light 405 nmcustom made circular LED light
macro lens Canon MP- E 65 mm f/2.8Canon, Japan
microscope Kapa 2000Kvant, Slovakiaoptical microscope
microtome Auxilab 508Auxilab, Spainmanual rotary microtome
paraformaldehydeSigma-Aldrich30525-89-4
Paraplast PlusSigma-AldrichP3683parafin medium for tissue embedding
PBSSigma-AldrichP4417Phosphate saline buffer
scissors CastroviejoOrimed OR66-108micro scissors for CAM separation
software ImageJ 1.53public domainimage processing and analysis program
stock solution HDLSigma-Aldrich437641-10MGhigh density lipoproteins
stock solution LDLSigma-Aldrich437644-10MGlow density lipoproteins
Tissue-Tek O.C.T. CompoundSakura Finetek4583Optimal Cutting Temperature Compound 118 mL squeeze bottles

References

  1. Nowak-Sliwinska, P., van Beijnum, J. R., van Berkel, M., vanden Bergh, H., Griffioen, A. W. Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane. Angiogenesis. 13 (4), 281-292 (2010).
  2. van Leengoed, H. L. L. M., vander Veen, N., Versteeg, A. A. C., Ouellet, R., van Lier, J. E., Star, W. M.

Explore More Articles

Quail Chorioallantoic MembraneCAMPhotodynamic DiagnosisPhotodynamic TherapyEx Ovo Culture3R RuleIn Vivo TestingHypericinFluorescence ImagingViolet Excitation Light

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved