A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a protocol for the isolation of mesenchymal stem cells from human umbilical cord tissue and their differentiation into the skeletal muscle lineage.
Exploring the therapeutic potential of mesenchymal stem cells is contingent upon the ease of isolation, potency toward differentiation, and the reliability and robustness of the source. We describe here a stepwise protocol for the isolation of mesenchymal stem cells from human umbilical cord tissue (uMSCs), their immunophenotyping, and the propagation of such cultures over several passages. In this procedure, the viability of the uMSCs is high because there is no enzymatic digestion. Further, the removal of blood vessels, including the umbilical cord arteries and the vein, ensures that there is no contamination of cells of endothelial origin. Using flow cytometry, uMSCs upon isolation are CD45−CD34−, indicating an absence of cells from the hematopoietic lineage. Importantly, they express key surface markers, CD105, CD90, and CD73. Upon establishment of cultures, this paper describes an efficient method to induce differentiation in these uMSCs into the skeletal muscle lineage. A detailed analysis of myogenic progression in differentiated uMSCs reveals that uMSCs express Pax7, a marker for myogenic progenitors in the initial stages of differentiation, followed by the expression of MyoD and Myf5, and, finally, a terminal differentiation marker, myosin heavy chain (MyHC).
The human umbilical cord has been credited to possess a robust reservoir of mesenchymal stem cells, which are currently being explored for regenerative therapies due to their robust proliferation and differentiation rates, immunomodulatory properties, and ability to generate cells from all the three germ layers1. The umbilical cord tissue consists of multiple compartments such as the umbilical cord blood, the umbilical vein subendothelium, and the Wharton's jelly (WJ), which in itself encompasses three indistinct regions-the perivascular zone, the intervascular zone, and the sub-amnion or the cord lining (CL)2. While uMSCs can be isolated from all these different regions and broadly express key MSC markers, there is no clarity on whether these compartments contain the same population of uMSCs or display differences in their differentiation potencies3. Hence, protocols for the isolation of uMSCs require a greater precision in their mode and region of isolation, the robust characterization of differentiation potentials, and finally, a comparative analysis from different compartments of the cord.
In this context, few studies have demonstrated differences in uMSC proliferative and differentiative potentials between different parts of the cord. Of these, comparative analyses between uMSCs isolated from the CL and WJ regions revealed a greater proliferative potential in CL-derived uMSCs3,4. In a separate study, WJ-derived uMSCs performed better in proliferation assays compared to perivascular cells (HUCPV)5. In examining differences between cord blood-derived uMSCs and cord tissue-derived uMSCs devoid of vascular contamination, differential expression of key MSC markers was reported between the two compartments, as well as increased proliferation rates in cord tissue-derived uMSCs6.
Of the several studies examining the differentiation potentials of uMSCs primarily into tissues of the mesoderm lineage such as osteogenic, adipogenic, and chondrogenic lineages, very few have provided detailed protocols for myogenic differentiation and subsequent characterization, as well as comparative analyses between various cord compartments. In this context, we have developed a robust muscle differentiation protocol and observed that cord tissue-derived uMSCs display superior myogenic differentiation capabilities compared to cord blood6. Here, a stepwise protocol is detailed for the isolation of uMSCs from the whole cord tissue devoid of cells associated with the vasculature, their characterization, and their differentiation into the myogenic lineage.
The use of umbilical cord tissue in this study was approved by the Institutional Committee for Stem Cell Research (IC-SCR), the Institutional Ethics Committee, Translational Health Science and Technology Institute (IEC-THSTI), the Institutional Ethics Committee of Civil Hospital, Gurugram, Haryana, and the Institutional Biosafety Committee, THSTI. Human cord tissue samples were harvested from term deliveries at the time of birth. Informed written consent was obtained from subjects . All methods were carried out in accordance with relevant guidelines and regulations.
1. Isolation of MSCs from cord tissue
2. Immunophenotyping and propagation of uMSCS
3. Differentiation of uMSCs into skeletal muscle
The success of isolation of uMSCs from cord tissue is >95%, unlike the poor rates of success from whole cord blood. Upon successful isolation of uMSCs, FACS analysis reveals that all the cells are CD34−CD45−CD105+CD90+. However, in comparative analysis, uMSCs isolated from cord blood display heterogeneous populations, wherein a proportion of cells show CD34+CD45+CD105+ (~15%). Additionally, double-positive CD105+CD90
Critical steps
A critical step in this protocol is the collection of tissue under aseptic conditions, from the time of delivery to the maintenance of sterile cultures, for the entire duration of propagation. During cord collection, it is essential that the cord does not touch any non-sterilized surface and is externally swabbed with 70% ethanol before collection in tubes containing PBS supplemented with antibiotics. It is important to limit the time between cord collection and processing of the tis...
The authors declare no competing interests.
We thank Mr. Ojas Tikoo for their help with filming and video production. We also acknowledge the help received from the GARBH-Ini (Interdisciplinary Group on Advanced Research and Birth Outcome-DBT India) staff, nurses, and senior research officers at the Gurugram Civil Hospital and Dr. Pallavi Kshetrapal for help with logistics. This work was supported by grants awarded to Suchitra Gopinath from the Department of Biotechnology, India (BT/09/IYBA/2015; BT/PR29599/PFN/20/1393/2018).
Name | Company | Catalog Number | Comments |
4',6-diamidino-2-phenylindole (DAPI) | Thermo Fisher Scientific | D1306 | |
Amphotericin B | Sigma Aldrich | A2411 | |
Antibiotic solution 100x Liquid, endotoxin tested (10,000 U Penicillin and 10 mg Streptomycin/mL in 0.9% normal saline) | HiMedia | A001A-50mL | |
Anti-GAPDH antibody | Sigma Aldrich | G8795 | |
Anti-MyHC antibody (My32) | Novus Biologicals | NBP2-50401AF647 | |
Anti-MyoD antibody (5.8A) | Novus Biologicals | NB100-56511 | |
Anti-Myogenin antibody (Clone F5D) | Novus Biologicals | NBP2-34616AF594 | |
Anti-Pax7 antibody | DSHB | DSHB-C1-576 | |
APC Mouse anti-human CD90 clone 5E10 | BD Biosciences | 559869 | |
Collagen Type 1 | Merck | C8919 | |
D (+) Glucose | Sigma Aldrich | G7021 | |
Dexamethasone | SIGMA | D4902 | |
FACSCanto II or FACSAria III | BD Biosciences | ||
Fetal Bovine Serum, qualified Brazil | GIBCO | 10270106 | not to be heat-inactivated |
FITC Mouse anti-human CD106 clone 51-10C9 | BD Biosciences | 551146 | |
FITC Mouse anti-human CD14 clone M5E2 | BD Biosciences | 557153 | |
FITC Mouse anti-human CD31 clone WM59 | BD Biosciences | 557508 | |
FITC Mouse anti-human CD34 clone 581 | BD Biosciences | 555821 | |
FITC Mouse anti-human CD45 clone HI30 | BD Biosciences | 555482 | |
FITC Mouse anti-human CD49D clone 9F10 | BD Biosciences | 560840 | |
FITC Mouse anti-human CD90 clone 5E10 | BD Biosciences | 555595 | |
FITC Mouse anti-human HLA-A,B,C clone G46-2.6 | BD Biosciences | 557348 | |
FITC Mouse anti-human IgG clone G18-145 | BD Biosciences | 555786 | |
FlowJo software | BD Biosciences | ||
Gentamicin | Sigma Aldrich | G1264 | |
Horse serum | HiMedia | RM1239 | |
Hydrocortisone | Merck | H4001 | |
Laminin | Merck | L2020 | |
MEM Alpha Modification without L-glutamine, ribo- and deoxyribonucleosides | Hyclone | SH30568.FS | Basal medium for uMSCs |
PE Mouse anti-human CD105 clone 266 | BD Biosciences | 560839 | |
PE Mouse anti-human CD44 clone 515 | BD Biosciences | 550989 | |
PE Mouse anti-human CD49E clone llA1 | BD Biosciences | 555617 | |
PE Mouse anti-human IgG clone G18-145 | BD Biosciences | 555787 | |
PE-Cy7 Mouse anti-human CD73 CLONE AD2 | BD Biosciences | 561258 | |
Phosphate buffered saline (PBS), pH=7.4 | HiMedia | M1866 | |
Trypsin/EDTA solution (1x 0.25% Trypsin and 0.02% EDTA in Hanks Balanced Salt Solution (HBSS) | HiMedia | TCL049-100mL |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved