A subscription to JoVE is required to view this content. Sign in or start your free trial.
The protocol presents a cancer immunotherapy model using cell-based tumor vaccination with Flt3L-expressing B16-F10 melanoma. This protocol demonstrates the procedures, including preparation of cultured tumor cells, tumor implantation, cell irradiation, measurement of tumor growth, isolation of intratumoral immune cells, and flow cytometry analysis.
Fms-like tyrosine kinase 3 ligand (Flt3L) is a hematopoietic cytokine that promotes the survival and differentiation of dendritic cells (DCs). It has been used in tumor vaccines to activate innate immunity and enhance antitumor responses. This protocol demonstrates a therapeutic model using cell-based tumor vaccine consisting of Flt3L-expressing B16-F10 melanoma cells along with phenotypic and functional analysis of immune cells in the tumor microenvironment (TME). Procedures for cultured tumor cell preparation, tumor implantation, cell irradiation, tumor size measurement, intratumoral immune cell isolation, and flow cytometry analysis are described. The overall goal of this protocol is to provide a preclinical solid tumor immunotherapy model, and a research platform to study the relationship between tumor cells and infiltrating immune cells. The immunotherapy protocol described here can be combined with other therapeutic modalities, such as immune checkpoint blockade (anti-CTLA-4, anti-PD-1, anti-PD-L1 antibodies) or chemotherapy in order to improve the cancer therapeutic effect of melanoma.
Cancer immunotherapy has been recognized as a promising therapeutic strategy based on its less toxic side effects and more durable responses. Several types of immunotherapies have been developed, including oncolytic virus therapies, cancer vaccines, cytokine therapies, monoclonal antibodies, adoptive cell transfer (CAR-T cells or CAR-NK), and immune checkpoint blockade1.
For cancer vaccines, there are different forms of therapeutic vaccines, such as whole cell-based vaccines, protein or peptide vaccines, and RNA or DNA vaccines. Vaccination relies on the ability of antigen-presenting cells (APCs) to process tumor ant....
All mice used in the study were maintained and housed in the vivarium of the La Jolla Institute for Immunology (LJI) under specific pathogen-free conditions with controlled temperature and humidity. Animal experiments were performed with 8-14 weeks old female C57BL/6 mice according to guidelines and protocols approved by the LJI Animal Care Committee.
1. Preparation of cultured tumor cells for implantation
A visible black dot of the implanted B16-F10 cells is usually observed on the skin surface ~3 days after tumor implantation. Mice are treated with the tumor vaccine 3, 6, and 9 days after the tumor nodule has reached a size of ≥2 mm. We observed a significant reduction in tumor growth in vaccinated mice group ~2 weeks after tumor implantation (Figure 1). At the end of the experiment, we isolated the intratumoral immune cells and analyzed their number and cell surface marker expression,.......
The protocol described here is based on the study by Allison's group. They demonstrated that combination of B16-Flt3L vaccine with CTLA-4 blockade showed a synergistic effect on survival rate and tumor growth, whereas no reduction of tumor growth was seen in mice receiving the B16-Flt3L vaccine or anti-CTLA-4 antibody treatment alone7. Recent studies have revealed a novel Treg-intrinsic CTLA4-PKCη signaling pathway that plays an important obligatory role in regulating the contact-dependen.......
We thank Dr. Stephen Schoenberger for providing B16-Flt3L cells and the staff of the LJI animal and flow cytometry facilities for excellent support.
....Name | Company | Catalog Number | Comments |
0.25% trypsin-EDTA | Gibco | 25200-056 | |
10% heat-inactivated FBS | Omega Scientific | FB-02 | Lot# 209018 |
30G needle | BD Biosciences | 305106 | |
96 well V-shape-bottom plate | SARSTEDT | 83.3926.500 | |
B16 cell line expressing Fms-like tyrosine kinase 3 ligand (B16-Flt3L) | Gift of Dr. Stephen Schoenberger, LJI | Flt3L cDNAs were cloned into the pMG-Lyt2 retroviral vector, as in refernce 5, Supplemental Figure 1 | |
B16-F10 cell lines | ATCC | CRL-6475 | |
Centrifuge 5810R | Eppendorf | ||
Cytofix fixation buffer | BD Biosciences | BDB554655 | Cell fixation buffer (4.2% PFA) |
Cytofix/Cytoperm kit | BD Biosciences | 554714 | Fixation/Permeabilization Solution Kit |
DNase I | Sigma | 11284932001 | |
Dulbecco's Modified Eagle Medium (DMEM) | Corning | 10013CV | |
Electronic digital caliper | Fisherbrand | 14-648-17 | |
FlowJo software | Tree Star | Flow cytometer data analysis | |
GolgiStop (protein transport inhibitor) | BD Biosciences | 554724 | 1:1500 dilution |
HEPES (1M) | Gibco | 15630-080 | |
Ionomycin | Sigma | I0634 | |
Iscove’s modified Dulbecco’s medium (IMDM) | Thermo Fisher | 12440053 | |
LSR-II cytometers | BD Biosciences | Flow cytometer | |
MEM nonessential amino acids | Gibco | 11140-050 | |
penicillin and streptomycin | Gibco | 15140-122 | |
Percoll | GE Healthcare Life Sciences | GE17-0891-02 | density gradient specific medium |
PMA | Sigma | P1585 | |
Red Blood Cell Lysing Buffer Hybri-Max liquid | Sigma | R7757-100ML | |
RPMI 1640 medium | Corning | 10-040-CV | |
RS2000 X-ray Irradiator | Rad Source Technologies | ||
sodium pyruvate | Gibco | 11360-070 | |
Sterile cell strainer 40 μm | Fisherbrand | 22-363-547 | |
Sterile cell strainer 70 μm | Fisherbrand | 22-363-548 | |
TL Liberase | Roche | 477530 | |
Zombie Aqua fixable viability kit | BioLegend | 423101 | |
Antibodies | |||
Anti-mCD45 | BioLegend | 103135 | Clone: 30-F11 Fluorophore: BV570 Dilution: 1:200 |
Anti-mCD3ε | BioLegend | 100327 | Clone: 145-2C11 Fluorophore: PerCP-Cy5.5 Dilution: 1:200 |
Anti-mCD8 | BioLegend | 100730 100724 | Clone: 53-6.7 Fluorophore: Alexa Fluor 700, Alexa Fluor 647 Dilution: 1:200 |
Anti-mCD4 | BioLegend | 100414 | Clone: GK1.5 Fluorophore: APC-Cy7 Dilution: 1:200 |
Anti-mFoxp3 | Thermo Fisher Scientific | 11577382 | Clone: FJK-16s Fluorophore: FITC Dilution: 1:100 |
Anti-m/hGzmB | BioLegend | 372208 | Clone: QA16A02 Fluorophore: PE Dilution: 1:100 |
Anti-mIFNg | BioLegend | 505826 | Clone: XMG1.2 Fluorophore: PE-Cy7 Dilution: 1:100 |
Anti-mCD19 | BioLegend | 115543 | Clone: 6D5 Fluorophore: BV785 Dilution: 1:100 |
Anti-mGr1 | BioLegend | 108423 | Clone: RB6-8C5 Fluorophore: APC/Cy7 Dilution: 1:200 |
Anti-mCD11b | BioLegend | 101223 | Clone: M1/70 Fluorophore: Pacific blue Dilution: 1:100 |
Anti-mF4/80 | BioLegend | 123114 | Clone: BM8 Fluorophore: PECy7 Dilution: 1:100 |
Anti-mCD11c | BioLegend | 117328 | Clone: N418 Fluorophore: PerCP Cy5.5 Dilution: 1:100 |
Anti-mMHCII | BioLegend | 107622 | Clone: M5/114.15.2 Fluorophore: AF700 Dilution: 1:400 |
Anti-mCD103 | BioLegend | 121410 | Clone: 2E7 Fluorophore: Alexa Fluor 647 Dilution: 1:200 |
Anti-mCD86 | BioLegend | 105007 | Clone: GL-1 Fluorophore: PE Dilution: 1:200 |
FC-blocker (Rat anti-mouse CD16/CD32) | BD Biosciences | 553141 | Clone: 2.4G2 Dilution: 1:200 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved