Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A model mimicking the clinical scenario of burn injury and infection is necessary for furthering burn research. The present protocol demonstrates a simple and reproducible rat burn infection model comparable to that in humans. This facilitates the study of burn and infections following burn for developing new topical antibiotic treatments.

Abstract

Burn induction methodologies are inconsistently described in rat models. A uniform burn wound model, which represents the clinical scenario, is necessary to perform reproducible burn research. The present protocol describes a simple and reproducible method to create ~20% total body surface area (TBSA) full-thickness burns in rats. Here, a 22.89 cm2 (5.4 cm diameter) copper rod heated at 97 °C in a water bath was applied to the rat skin surface to induce the burn injury. A copper rod with a high thermal conductivity was able to dissipate the heat deeper in the skin tissue to create a full-thickness burn. Histology analysis shows attenuated epidermis with coagulative damage to the full-thickness extent of the dermis and the subcutaneous tissue. Additionally, this model is representative of the clinical situations observed in hospitalized burn patients following burn injury such as immune dysregulation and bacterial infections. The model can recapitulate the systemic bacterial infection by both Gram-positive and Gram-negative bacteria. In conclusion, this paper presents an easy-to-learn and robust rat burn model that mimics the clinical situations, including immune dysregulation and bacterial infections, which is of considerable utility for the development of new topical antibiotic drugs for burn wound and infections.

Introduction

Burn injuries are among the most devastating forms of trauma, with mortality rates reaching 12% even in specialized burn centers1,2,3. According to recently published reports, ~486,000 burn patients require medical care annually in the United States, with nearly 3,500 deaths1,2,3,4,5,6. Burn injury imposes a major challenge for patients' immune system and creates a significant open wound, which is slow to heal, leaving them susceptible to cutaneous, pulmonary, and systemic colonization with nosocomial, opportunistic bacteria. Immune dysregulation combined with the bacterial infection is associated with increased morbidity and mortality in burn patients7.

An animal burn and infection model is essential for studying the pathogenesis of bacterial infections following skin damage and immune suppression associated with burn trauma. Such models enable the design and evaluation of new methods for treating bacterial infections in burn patients. Rats and humans share similar skin physiological and pathological characteristics that have been previously documented8. Additionally, rats are smaller in size, making them easier to handle, more affordable, and easier to procure and maintain than larger animal models.

These characteristics make rats an ideal model animal to study burns and infections9. Unfortunately, the technique for burn induction is inconsistent and often minimally described10,11,12,13,14. The present protocol is designed to develop a simple, cost-effective, and reproducible procedure for creating a consistent full-thickness burn injury in a rat model that simulates the clinical scenario and can be used to evaluate immune suppression and bacterial infection.

Protocol

All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of The University of North Carolina and were conducted in accordance with its established guidelines. Male and female Sprague Dawley rats (250-300 g) aged 7-9 weeks old were used for the experiments. All animals were housed in a 12 h:12 h light-dark cycle with free access to food and water ad libitum. Always work with your institutional veterinarian about an analgesic plan prior to study initiation. 

1. Preparing rats for the burn injury

  1. Prepare the animals for burn injury 24 h prior to the burn.
  2. Anesthetize the rat with 5% isoflurane in 100% oxygen in an induction chamber for 5 min (flow rate: 2 L/min) until breathing has slowed.
  3. Once the rat is deeply anesthetized (unresponsive to toe pinch on all limbs), move the rat over to a heating pad in a prone position and reduce the isoflurane to 1.5% in oxygen for maintenance through a nose cone.
  4. To prevent corneal drying after anesthesia and during the procedure, apply eye lubricant on the corneas of both eyes using a cotton-tipped applicator.
  5. Shave the dorsal area of the rat using an electric clipper (see the Table of Materials) and remove as much hair as possible in a large rectangle from the shoulder blades down to the base of the tail (Figure 2A).
  6. Clean the shaved area with a tissue soaked in saline to wipe out the loose hairs. Apply hair removal lotion to the shaved area using a cotton-tipped applicator and leave it on for ~3 min.
    NOTE: Application of the referenced hair removal lotion for more than 3 min will induce red rashes on the skin.
  7. Wipe the area with a wet gauze sponge twice to remove the lotion and prevent skin irritation.
  8. Turn off the isoflurane, remove the nose cone, and place the rat in the recovery cage.
    NOTE: Put a heating pad in the recovery cage.
  9. Transfer the recovered animal to a clean housing cage for the next day's burn procedure (it may take ~10-15 min for the rat to recover from the anesthesia).

2. Inducing the burn injury in rats

  1. On the day of the burn, set the water bath temperature to 97 °C and place all four copper rods (420 g each; Figure 1) in the water bath 1 h prior to the burn experiment to let the rods warm up uniformly.
    NOTE: The rods must be immersed in the water. Check the accuracy of the digital temperature display using a thermometer before the experiment.
  2. Anesthetize the rat as mentioned in section 1.
  3. Once the rat is unresponsive to toe pinch on all limbs, place it on a heating pad in a prone position with 1.5% isoflurane in oxygen for maintenance (Figure 2A).
  4. Inject morphine (20 mg/kg body weight) via the intraperitoneal (i.p.) route for pain management6.
  5. Check the temperature of the water in the water bath. Set up the timer and put on the heat-resistant gloves.
  6. Take out one heated copper rod from the water bath and touch it on the dorsum area of the rat for 7 s to induce the burn.
    NOTE: Keep a minimum distance (10-15 cm) between the water bath and the animal to minimize heat loss, and do not put pressure on the rods while inducing the burn (i.e., contact must be maintained by gravity).
  7. Apply four burns, using one rod per burn site, one immediately after the other to produce an approximately 20% TBSA full-contact burn (Figure 2B).
  8. After the burn, resuscitate the animal by i.p. injection of lactated Ringer's solution (0.1 mL/g body weight).
    NOTE: Use a body temperature-adjusted lactated ringer's solution to resuscitate the rats.
  9. Turn off the isoflurane, remove the nose cone, and place the rat on the heat mat for recovery.

3. Preparation of bacterial inoculum and infection

  1. Streak the frozen sample of Pseudomonas aeruginosa PAO1 and Staphylococcus aureus ATCC25923 on Muller Hinton Agar (MHA) plates, 2 days prior to the burn experiment.
  2. On the next day, select a single colony of grown bacteria from the plate, and using an inoculation loop, slightly scrape it off the plate. Then, place it in the culture tube to inoculate 10 mL of Muller Hinton Broth (MHB) and culture overnight at 37 °C in an incubator shaker.
  3. On the day of the burn and infection, centrifuge the culture at 4,000 × g for 5 min. Wash the pellet with normal saline (0.9% NaCl solution).
  4. Resuspend the bacterial pellet in saline and dilute up to 0.1 OD600nm (optical density at 600 nm). Dilute the bacterial inoculum by taking 200 µL of this bacterial suspension and mixing it with 800 µL of saline to get the desired bacterial inoculum of 2 × 107 CFU/mL.
  5. Inject 50 µL of P. aeruginosa or S. aureus inoculum prepared in the previous step (infection dose 1 × 106 CFU) into the anesthetized rat 15 min after the burn, using a 29 G needle subcutaneously as close to the burn wound as possible.
  6. After infecting the burn wound, place the rat on the heating pad for recovery. Once the animal recovers (~15-20 min), house it in a clean cage.
    NOTE: After the burn injury, house one rat per cage. Use water wet food pellets for easy chewing and place them on the cage floor for easy reach.
  7. Fill the water bottles in the cage with morphine-spiked water (0.4 mg/mL) for pain management.
    NOTE: Oral Morphine mirrors the clinical situation with human burn patients. This study utilized oral morphine to keep these experiments comparable to human burn patients after consulting with the veterinary staff on numerous occasions. Drinking and weight logs were maintained throughout the experiment. Use the same drinking system during all the procedures. Other analgesics, such as Buprenorphine, can be administered subcutaneously/intraperitoneally as per institutional animal care guidelines.  
  8. Fill out the monitoring checklist and monitor the animals closely for distress or illness for the entire duration of the experiment.

4. Evaluation of the burn injury

  1. Evaluate the skin burn injury morphologically in terms of color and margin immediately after the burn injury.
  2. Stain the burned skin with hematoxylin and eosin (H&E) to visualize the burn wound structure and epithelial gap15 (see step 5.6 for sample processing).

5. Postprocessing of rat samples and bacterial enumeration

  1. Euthanize the rat at 24, 48, and 72 h post burn with an overdose of anesthesia.
  2. Withdraw blood samples from the rats via cardiac puncture and collect them in a mini collect tube.
    1. Analyze complete blood counts from the blood samples to determine the effect of burn induction on the host immune system.
  3. Harvest skin, subcutaneous tissue, muscle, lung, and spleen at the time of euthanasia.
    NOTE: Keep one part (~1 cm × 1 cm; weighing ~200-300 mg) of the skin for H&E staining and another part for bacterial enumeration.
  4. Collect the tissues in a 10 mL collection tube and place them in normal saline on ice for bacterial enumeration.
  5. Normalize the tissue weight with normal saline and homogenize the samples using a tissue homogenizer (see the Table of Materials).
    1. Serially dilute the tissue homogenates in normal saline.
    2. Plate 100 µL of undiluted homogenate and all dilutions of each tissue sample on cetrimide agar plates for samples collected from rats infected with P. aeruginosa.
      NOTE: Use mannitol agar plates for plating samples collected from rats infected with S. aureus.
    3. Incubate the plates at 37 °C in an incubator for 16-18 h.
    4. The next day, count the bacterial colonies on the plates, multiply by the dilution ratio to get the CFU/mL count, and normalize with the tissue's weight to calculate the CFU/g tissue.
    5. Employ data analysis software to plot the bacterial counts in different organs at the different sampling time-points.
  6. Perform H&E staining of burned skin to visualize the wound structure and epithelial gap.
    1. Using scissors and toothed forceps, cut a skin patch of 1 cm x 1 cm from the burn area and immerse it in a fixative (10% neutral buffered formalin, NBF) for 48 h at room temperature.
      NOTE: Swirl the container to ensure all tissues are completely immersed in the fixative, with the volume of the fixative 30x the tissue volume.
    2. Dehydrate the skin tissue with 70% (v/v) ethanol for 72 h at room temperature.
    3. Process the dehydrated samples in paraffin blocks to cut the sections and stain with H&E15.
    4. Digitally image the stained slides in a slide scanner (see the Table of Materials) using a 40x objective.
    5. Analyze the scanned image using software (see Supplementary File 1 for processing of the image for analysis; see the Table of Materials).
    6. Examine all fields of the stained skin section to evaluate the condition of the epidermis, dermis, subcutaneous tissue, and skeletal muscle.

Results

The protocol presented here is highly reproducible and resulted in a third-degree, full-thickness burn injury in rats. The burn wound appears waxy white after burn induction (Figure 2B). The color of the burn injury changed from white to brown over the course of 72 h post burn (Figure 2B-E).

Histological analysis confirmed a full-thickness burn (depth >2.61 mm at 24 h post burn;

Discussion

Several burn models have been presented to study the pathophysiology of burn injury8,12,16,17. In the present study, we employed a rat model to develop a simple and reproducible protocol to induce a full-thickness burn followed by bacterial infection to simulate an infected burn trauma in patients. The choice of the rat as the animal model to mimic human conditions is based on a balance of cost...

Disclosures

The authors have no conflicts of interest to disclose.

Acknowledgements

The authors thank the Division of Comparative Medicine at the University of North Carolina for the provision and care of animals. We thank Lauren Ralph and Mia Evangelista in the Pathology Services Core for expert technical assistance with Histopathology/Digital Pathology, including tissue sectioning and imaging. This research was supported by a research grant from the Department of Defense (Award number W81XWH-20-1-0500, GR and TV).

Materials

NameCompanyCatalog NumberComments
1 mL syringeBD, USA309597Used to inject the analgesic
1.7 mL MicrotubeOlympus, USA24-282Used to carry morphine
10% NBFVWR, USA16004-115Used to fix the skin piece for staining
30 mL syringeBD, USA302832Used to inject the lactate ringer solution
70% ethyl alcoholFischer Scientific, USABP28184
Aperio AT2 Digital Pathology  Slide Scanner with ImageScope softwareAperio, Technologies Inc., Vista, CA, USAn/aScanning of H & E slides and analysis
Cetrimide agar platesBD, USA285420Selective media plates for Pseudomonas aeruginosa growth
Copper rodsn/an/aUsed to induce the burn injury
Cotton tipped applicatorsOMEGA Surgical supply, USA4225-IMCUsed to apply eye ointment
Electric shaverOster, USAGolden A5Used to remove the dorsal side hairs
Eye lubeDechra, UKn/aThe eye wetting agent to provide long lasting comfort and avoid eye dryness
Fluff filled underpadsMedline, USAMSC281225Used in the burn procedure
ForcepF.S.T.11027-12Used to hold the skin piece
Gauze spongesOasis, USAPK412Used to clean the applied nair cream from the dorsal side 
Heat-resistant glovesn/an/aUsed to hold the heated copper rods
Hematology AnalyzerIDEXX laboratories, USAProCyte Dx
Induction chamberKent Scientific, USAvetFlo-0730Used to anesthesize the animals
Insulin syringeBD, USA329461
IsofluranePivetal, USANDC46066-755-04Used to anesthesized rats to induce a loss of consciousness
Isoflurane vaporisern/an/a
Lactated ringer's solutionicumedical, USANDC0990-7953-09Used to resuscitate the rats
L-shaped spreaderFischer Scientific, USA14-665-230
Mannitol AgarBD, USA211407Selective media plates for Staphylococcus aureus growth
Minicollect tubes (K2EDTA)greiner bio-one, USA450480Used to collect the blood
MorphineMallinckrodt, UKNDC0406-8003-30This analgesia was used to induce the inability to feel burn injury pain
Muller Hinton BrothBD, USA275730
Muller Hinton II AgarBD, USA211438
Nair hair removal lotionNair, USAn/aUsed to remove the residual hairs on dorsal side
Needle 23 GBD, USA305193Used to inject the lactate ringer solution
Normal salinen/an/a
SpectrophotometerThermoScientific, USAGenesys 30
Sprague-Dawley rats, male and femaleCharles River Labsn/a7-9 weeks old for burn induction
Surgical ScissorF.S.T.14501-14Used to cut the desired skin piece
Tissue collection tubesGlobe Scientific220101236
Tissue HomogenizerKinematica, Inc, USAPOLYTRON PT2100Used to homogenize the tissue samples
Water bathFischer Scientific, USAn/aUsed to induce the burn injury
Weighted heating padComfytemp, USAn/aUsed during the procedure to keep rat's body warm

References

  1. Peck, M., Molnar, J., Swart, D. A global plan for burn prevention and care. Bulletin of the World Health Organization. 87, 802-803 (2009).
  2. American Burn Association. Burn incidence and treatment in the United States: 2011 fact sheet. Chicago: American Burn Association. , (2011).
  3. Miller, S. F., et al. National burn repository 2007 report: a synopsis of the 2007 call for data. Journal of Burn Care & Research. 29 (6), 862-870 (2008).
  4. Kruger, E., Kowal, S., Bilir, S. P., Han, E., Foster, K. Relationship between patient characteristics and number of procedures as well as length of stay for patients surviving severe burn injuries: analysis of the American Burn Association National Burn Repository. Journal of Burn Care & Research. 41 (5), 1037-1044 (2020).
  5. American Burn Association. Burn incidence and treatment in the United States: 2016. Burn Incidence Fact Sheet. Chicago: American Burn Association. , (2016).
  6. Willis, M. L., et al. Plasma extracellular vesicles released after severe burn injury modulate macrophage phenotype and function. Journal of Leukocyte Biology. 111 (1), 33-49 (2022).
  7. Kartchner, L. B., et al. One-hit wonder: late after burn injury, granulocytes can clear one bacterial infection but cannot control a subsequent infection. Burns. 45 (3), 627-640 (2019).
  8. Abdullahi, A., Amini-Nik, S., Jeschke, M. Animal models in burn research. Cellular and Molecular Life Sciences. 71 (17), 3241-3255 (2014).
  9. Cai, E. Z., et al. Creation of consistent burn wounds: a rat model. Archives of Plastic Surgery. 41 (4), 317 (2014).
  10. Pessolato, A. G. T., dos Santos Martins, D., Ambrósio, C. E., Mançanares, C. A. F., de Carvalho, A. F. Propolis and amnion reepithelialise second-degree burns in rats. Burns. 37 (7), 1192-1201 (2011).
  11. Gurung, S., Škalko-Basnet, N. Wound healing properties of Carica papaya latex: in vivo evaluation in mice burn model. Journal of Ethnopharmacology. 121 (2), 338-341 (2009).
  12. Eloy, R., Cornillac, A. Wound healing of burns in rats treated with a new amino acid copolymer membrane. Burns. 18 (5), 405-411 (1992).
  13. Upadhyay, N., et al. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food and Chemical Toxicology. 47 (6), 1146-1153 (2009).
  14. El-Kased, R. F., Amer, R. I., Attia, D., Elmazar, M. M. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing. Scientific Reports. 7 (1), 1-11 (2017).
  15. Fan, G. -. Y., et al. Severe burn injury in a swine model for clinical dressing assessment. Journal of Visualized Experiments. (141), e57942 (2018).
  16. Davenport, L., Dobson, G., Letson, H. A new model for standardising and treating thermal injury in the rat. MethodsX. 6, 2021-2027 (2019).
  17. Kaufman, T., Lusthaus, S., Sagher, U., Wexler, M. Deep partial skin thickness burns: a reproducible animal model to study burn wound healing. Burns. 16 (1), 13-16 (1990).
  18. Casal, D., et al. Blood supply to the integument of the abdomen of the rat: a surgical perspective. Plastic and Reconstructive Surgery Global Open. 5 (9), (2017).
  19. Casal, D., et al. A model of free tissue transfer: the rat epigastric free flap. Journal of Visualized Experiments. (119), e55281 (2017).
  20. Naldaiz-Gastesi, N., Bahri, O. A., Lopez de Munain, A., McCullagh, K. J., Izeta, A. The panniculus carnosus muscle: an evolutionary enigma at the intersection of distinct research fields. Journal of Anatomy. 233 (3), 275-288 (2018).
  21. Weber, B., et al. Modeling trauma in rats: similarities to humans and potential pitfalls to consider. Journal of Translational Medicine. 17 (1), 1-19 (2019).
  22. Nguyen, J. Q. M., et al. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity. Journal of Biomedical Optics. 18 (6), 066010 (2013).
  23. Sobral, C., Gragnani, A., Morgan, J., Ferreira, L. Inhibition of proliferation of Pseudomonas aeruginosa by KGF in an experimental burn model using human cultured keratinocytes. Burns. 33 (5), 613-620 (2007).
  24. Olivera, F., Bevilacqua, L., Anaruma, C., Boldrini Sde, C., Liberti, E. Morphological changes in distant muscle fibers following thermal injury i n Wistar rats. Acta Cirurgica Brasileira. 25, 525-528 (2010).
  25. Davies, J. W. . Physiological Responses to Burning Injury. , (1982).
  26. Neely, C. J., et al. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12-neutrophil polarization. PloS One. 9 (1), e85623 (2014).
  27. Dunn, J. L., et al. Direct detection of blood nitric oxide reveals a burn-dependent decrease of nitric oxide in response to Pseudomonas aeruginosa infection. Burns. 42 (7), 1522-1527 (2016).
  28. Gouma, E., et al. A simple procedure for estimation of total body surface area and determination of a new value of Meeh's constant in rats. Laboratory Animals. 46 (1), 40-45 (2012).
  29. Dawson, N. The surface-area/body-weight relationship in mice. Australian Journal of Biological Sciences. 20 (3), 687-690 (1967).
  30. Moins-Teisserenc, H., et al. Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Frontiers in Immunology. 12, 529 (2021).
  31. Robins, E. V. Immunosuppression of the burned patient. Critical Care Nursing Clinics. 1 (4), 767-774 (1989).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Rat Burn ModelFull thickness Cutaneous BurnInfection StudyImmune DysregulationBacterial InfectionsBurn Wound HealingBurn Induction MethodAnimal ModelsIntraperitoneal InjectionMorphine Pain ManagementCopper Rod Burn TechniquePseudomonas AeruginosaStaphylococcus Aureus Culture

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved