JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Immunology and Infection

Rat Burn Model to Study Full-Thickness Cutaneous Thermal Burn and Infection

Published: August 23rd, 2022

DOI:

10.3791/64345

1UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 2Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 3Department of Microbiology & Immunology, University of North Carolina School of Medicine, 4Department of Surgery, University of North Carolina at Chapel Hill, 5Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 6Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University

Abstract

Burn induction methodologies are inconsistently described in rat models. A uniform burn wound model, which represents the clinical scenario, is necessary to perform reproducible burn research. The present protocol describes a simple and reproducible method to create ~20% total body surface area (TBSA) full-thickness burns in rats. Here, a 22.89 cm2 (5.4 cm diameter) copper rod heated at 97 °C in a water bath was applied to the rat skin surface to induce the burn injury. A copper rod with a high thermal conductivity was able to dissipate the heat deeper in the skin tissue to create a full-thickness burn. Histology analysis shows attenuated epidermis with coagulative damage to the full-thickness extent of the dermis and the subcutaneous tissue. Additionally, this model is representative of the clinical situations observed in hospitalized burn patients following burn injury such as immune dysregulation and bacterial infections. The model can recapitulate the systemic bacterial infection by both Gram-positive and Gram-negative bacteria. In conclusion, this paper presents an easy-to-learn and robust rat burn model that mimics the clinical situations, including immune dysregulation and bacterial infections, which is of considerable utility for the development of new topical antibiotic drugs for burn wound and infections.

Explore More Videos

Keywords Rat Burn Model

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved