A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, a headspace gas chromatography-tandem quadrupole mass spectrometry (HS-GC-MS/MS) method suitable for the determination of trimethylamine (TMA) in animal-derived medicines is described. The protocol includes sample pretreatment, headspace treatment, analysis conditions, methodological validation, and the determination of TMA in animal-derived medicines.
Animal-derived medicines have distinctive characteristics and significant curative effects, but most of them have an obvious fishy odor, resulting in the poor compliance of clinical patients. Trimethylamine (TMA) is one of the key fishy odor components in animal-derived medicine. It is difficult to identify TMA accurately using the existing detection method due to the increased pressure in the headspace vial caused by the rapid acid-base reaction after the addition of lye, which causes TMA to escape from the headspace vial, stalling the research progress of the fishy odor of animal-derived medicine. In this study, we proposed a controlled detection method that introduced a paraffin layer as an isolation layer between acid and lye. The rate of TMA production could be effectively controlled by slowly liquefying the paraffin layer through thermostatic furnace heating. This method showed satisfactory linearity, precision experiments, and recoveries with good reproducibility and high sensitivity. It provided technical support for the deodorization of animal-derived medicine.
Treating human diseases by utilizing products derived from animal parts and/or their by-products (referred to here as animal-derived medicines) is receiving increased attention. They play an important role in treating cancer, cardiovascular disease, liver cirrhosis, mastitis, and other diseases, with the advantages of a strong effect, small dosage, and significant and specific clinical efficacy. However, animal-derived medicines generally have a prominent fishy odor, which greatly affects patients' compliance, and are especially unfavorable for children1,2. The fishy odor mainly comes from the proteins, am....
See Table 1 for information on the medicinal materials of Pheretima, Periplaneta americana, and Hirudo. They were identified by Prof. Xu Runchun, Chengdu University of Traditional Chinese Medicine, as the dried bodies of Pheretima aspergillum (E.Perrier), Periplaneta americana L., and Whitmania pigra Whitman.
1. Specimen extraction
Schematic diagrams of the pre-processing principle and operation of this protocol are shown in Figure 1 and Figure 2, respectively. The peak time of TMA was 2.3 min, with a sharp peak shape and no interference from other impurities (Figure 3). Measuring the linear range of 0.1-10 µg/mL TMA standard solution, with TMA concentration as the abscissa and peak area as the ordinate, a standard curve was drawn. The linear regression e.......
Animal-derived medicines come from the whole body, organs or tissues, physiological or pathological products, excretions or secretions, and processed products of animals. TMA is an important source of fishy odor in animal-derived medicines; it is a typical malodorous substance with a very low olfactory threshold (0.000032 × 10-6 V/V) and a strong fishy odor13. At present, the commonly used HS-GC-MS method cannot detect TMA in animal-derived medicines stably and accurately.
This work was supported by grants from the National Natural Science Foundation of China (82173991), and Sichuan Science and Technology Program (2022YFS0442).
....Name | Company | Catalog Number | Comments |
Centrifuge | Beckman Coulter Trading (China) Co. | SSC-2-0213 | |
Chinese herbal medicine grinder | Zhejiang Yongkang Xi'an Hardware and Pharmaceutical Factory | HX-200K | |
Convection oven | Sanyo Electric Co., Ltd | MOV-112F | |
Decapper for 20 mm Aluminum caps | ANPEL Laboratory Technologies (Shanghai) Inc | V1750004 | |
Electronic balance | Shimadzu Corporation Japan | AUW220D | |
Gas chromatography mass spectrometry | Shimadzu Corporation Japan | TQ-8050 NX | |
Headspace Vial | ANPEL Laboratory Technologies (Shanghai) Inc | 25760200 | |
Homogenizer | Shanghai biaomo Factory | FJ200-SH | |
Preassembled Cap | ANPEL Laboratory Technologies (Shanghai) Inc | L4150050 | |
Sample sieve | Zhenxing Sieve Factory | / | |
SH-Volatile Amine | Chengdu Meimelte Technology Co., Ltd | 227-3626-01 | |
Sodium hydroxide | Chengdu Chron Chemicals Co., Ltd | 2022101401 | |
Solid paraffin wax | Shanghai Hualing Kangfu apparatus factory | 20221112 | |
Trichloroacetic acid | Chengdu Chron Chemicals Co., Ltd | 2022102001 | |
Trimethylamine hydrochloride | Chengdu Aifa Biotechnology Co., Ltd | AF22022108 | |
Ultra-pure water system | Sichuan Youpu Ultrapure Technology Co., Ltd | UPR-11-5T |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved