Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This study shows a detailed protocol to perform ultrastructure expansion microscopy in three in vitro life cycle stages of Trypanosoma cruzi, the pathogen responsible for Chagas disease. We include the optimized technique for cytoskeletal proteins and pan-proteome labeling.

Abstract

We describe here the application of ultrastructure expansion microscopy (U-ExM) in Trypanosoma cruzi, a technique that allows increasing the spatial resolution of a cell or tissue for microscopic imaging. This is performed by physically expanding a sample with off-the-shelf chemicals and common lab equipment.

Chagas disease is a widespread and pressing public health concern caused by T. cruzi. The disease is prevalent in Latin America and has become a significant problem in non-endemic regions due to increased migration. The transmission of T. cruzi occurs through hematophagous insect vectors belonging to the Reduviidae and Hemiptera families. Following infection, T. cruzi amastigotes multiply within the mammalian host and differentiate into trypomastigotes, the non-replicative bloodstream form. In the insect vector, trypomastigotes transform into epimastigotes and proliferate through binary fission.The differentiation between the life cycle stages requires an extensive rearrangement of the cytoskeleton and can be recreated in the lab completely using different cell culture techniques.

We describe here a detailed protocol for the application of U-ExM in three in vitro life cycle stages of Trypanosoma cruzi, focusing on optimization of the immunolocalization of cytoskeletal proteins. We also optimized the use of N-Hydroxysuccinimide ester (NHS), a pan-proteome label that has enabled us to mark different parasite structures.

Introduction

Expansion microscopy (ExM) was described for the first time in 2015 by Boyden et al.1. It is an imaging protocol with which a conventional microscope can achieve a spatial resolution below the diffraction limit. This higher resolution is obtained because of a physical enlargement of the sample. To accomplish this, fluorescently labeled molecules are crosslinked to a hydrogel, which is subsequently expanded isotropically with water. As a result of this expansion, the signals are separated nearly isotropically in all three dimensions. This method employs low-cost chemicals and enables a spatial resolution of approximately 65 nm using conventional....

Protocol

NOTE: Figure 1 illustrates the complete experimental design.

figure-protocol-187
Figure 1: U-ExM workflow for three in vitro life cycle stages of T. cruzi. Please click here to view a larger version o.......

Representative Results

If the protocol has been properly executed (Figure 1), samples will be visible as a planar and translucent gel that can be expanded up to a factor of 4-4.5x in water (Figure 3A). This expansion provided an effective resolution of about 70 nm, which may vary depending on the final expansion factor and imaging system employed. After the second expansion process and image acquisition in a confocal microscope, we were able to observe expansion factors of around 4.5........

Discussion

Ultrastructural expansion microscopy is a technique that allows obtaining high-resolution images of biological samples by physically expanding them to several times their original size. The U-ExM protocol involves several critical steps that must be carefully executed to achieve optimal results4. First, the sample must be fixed with a CP agent and embedded in a swellable hydrogel matrix. The formaldehyde present in the CP solution interacts with the free covalent bonds of the acrylamide to prevent.......

Acknowledgements

We thank Dolores Campos for assisting with Vero cell culture and Romina Manarin for assisting with T. cruzi culture. This work was supported by Agencia Nacional de Promoción Científica y Tecnológica, Ministerio de Ciencia e Innovación Productiva from Argentina (PICT2019-0526), Consejo Nacional de Investigaciones Científicas y Técnicas (PIBAA 1242), and Research Council United Kingdom [MR/P027989/1].

....

Materials

NameCompanyCatalog NumberComments
0.22 micrometers sterile syringe filters PESMembrane solutionsSFPES030022S
1 L beakerSchott Duran10005227
1.5-mL SPINWIN Micro Centrifuge TubeTarsonT38-500010
10 mL disposable sterile seryngeNP66-32
10 mL serological pipette sterileJet BiofilGSP211010
12-mm coverslipsMerienfeld GmbH01 115 20Round coverslips
12-well platesJet BiofilTCP011012
22-mm coverslipsCorning2845-22Square coverslips
24-well platesJet BiofilTCP-011-024
250 mL beakerSchott DuranC108.1
3 mL Pasteur pipetteDeltalab200037
35-mm glass bottom dishesMatsunami glass indD11130H
4′,6-Diamidine-2′-phenylindole dihydrochlorideSigma AldrichD9542DAPI
5 ml serological pipette sterileJet BiofilGSP010005
6-well platesSarstedt83.3920
AcrilamideBioRad1610101
Ammonium persulfateSigma AldrichA3678-25GAPS
ATTO 647 NHS esterBOC SciencesF10-0107For pan-proteome labelling
Biosafty CabinetTelstarBio II A/P
Bovine Sodium AlbumineSigma AldrichA7906BSA
CO2 IncubatorSanyoMCO-15A
Confocal MicroscopeZeissLSM 880
Disposable PetridishTarsons46009590 mm diameter
DMEM, High GlucoseThermo Fisher Cientific12100046Powder
Electronic digital caliperRadarRADAR-SLIDE-CALIPER
Ethanol AbsoluteSupelco1,00,98,31,000
Fetal Calf SerumInternegocios SAFCS FRA 500Sterile and heat-inactivated
Fiji image processing packageImageJdoi:10.1038/nmeth.2019
Formaldehyde 37%Sigma AldrichF8775FA
Glass PetridishMarienfeld SuperiorPM-340030060 mm diameter
Glucosa D(+)Cicarelli716214
Glutaraldehyde 70%Sigma AldrichG7776
Goat anti-Mouse IgG Secondary Antibody Alexa Fluor 555InvitrogenA-21422
Goat anti-Rabbit IgG Secondary Antibody FICTJackson Immunoresearch115-095-003
Graduated cylinderNalgene3663-1000
Graduated glass flaskGlasscoGL-274.202.01100 mL
Heating BlockIBRMade in house
HeminFrontier ScientificH651-9
Hydrochloric acid 36.8-38.0%Ciccarelli918110
Ice bucketCorning1167U68
IncubatorTecno DalvoTOC130
Liver InfusionDifco226920
Magnetic stirrer and heaterLab companionHP-3000
Metal spatulaSALTTECH200MM
Metal tweezersMarienfeld SuperiorPM-6633002
Methanol absolutCicarelli897110
Microcentrifuge tube 1.5 mLTarson500010-N
Microscopy grade paper KimWipesKimtech ScienceB0013HT2QW
Milli-Q water sistemMerk MilliporeIQ-7003
mouse anti- alpha tubulin clone DM1ASigma AldrichT9026
mouse anti-PFRPurified antibodiesDonated by Dr. Ariel Silber (USP)
N,N´-methylenbisacrilamideICN193997BIS
Na2HPO4Cicarelli834214
Neubauer chamberBoecoBOE 01
p1000 pipetteGilsonPIPETMAN P1000
p1000 pipette tipsTarsonTAR-521020B
p20 pipetteGilsonPIPETMAN P20
p20 pipette tipsTarsonTAR-527108
p200 pipetteGilsonPIPETMAN P200
p200 pipette tipsTarsonTAR-521010Y
ParaformaldehydeSigma AldrichP6148PFA
pH / ORP / °C meterHANNA InstrumentsHI 2211
Poly-D-Lysine 0.1%Sigma AldrichP8920
Potassium ChlorideCicarelli867212KCl
Razor bladePrintexBS 2982:1992
Sealing FIlm "Parafilm M"BemisPM996
Sodium AcrilateSigma Aldrich408220-25GSA
Sodium BicarbonateCicarelli929211NaHCO3
Sodium ChlorideCicarelli750214NaCl
Sodium Dodecyl SulfateBioRad1610302SDS
Sodium HidroxideMerk1-06498NaOH
Sorvall ST 16 CentrifugeThermo Fisher Scientific75004380
T-25 flasksCorning430639
TEMEDInvitrogen15524-010
Tissue paperElite
TriptoseMerck1106760500
TrisBioRad1610719
Tween-20Biopack2003-07Polysorbate 20
Vaccum pumpSilfabN33-A
Vero cellsATCCCRL-1587
Vortex MIxerDragon LabMX-S

References

  1. Chen, F., Tillberg, P. W., Boyden, E. S. Expansion microscopy. Science. 347 (6221), 543-548 (2015).
  2. Chozinski, T. J., et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nature Methods. ....

Explore More Articles

Trypanosoma CruziChagas DiseaseUltrastructure Expansion Microscopy U ExMCytoskeletonLife Cycle StagesAmastigotesTrypomastigotesEpimastigotesImmunolocalizationN Hydroxysuccinimide Ester NHS

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved