Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol outlines the primary steps for obtaining germ-free (GF) fish embryos and maintaining them from larvae until the juvenile stage, including sampling and detecting their sterile status. The use of GF models with infection is important for understanding the role of microbes in host health.

Abstract

Zebrafish serve as valuable models for research on growth, immunity, and gut microbiota due to their genomic similarities with mammals, transparent embryos developed in a relatively clean chorion environment, and extremely rapid development of larvae compared to rodent models. Germ-free (GF) zebrafish (Danio rerio) are crucial for evaluating pollutant toxicity and establishing human-like disease models related to microbial functions. In comparison to conventionally raised (CR) models (fish in common husbandry), GF zebrafish allow for more accurate manipulation of the host microbiota, aiding in determining the causal relationship between microorganisms and hosts. Consequently, they play a critical role in advancing our understanding of these relationships. However, GF zebrafish models are typically generated and researched during the early life stages (from embryos to larvae) due to limitations in immune function and nutrient absorption. This study optimizes the generation, maintenance, and identification of early GF zebrafish models without feeding and with long-term feeding using GF food (such as Artemia sp., brine shrimp). Throughout the process, daily sampling and culture were performed and identified through multiple detections, including plates and 16S rRNA sequencing. The aseptic rate, survival, and developmental indexes of GF zebrafish were recorded to ensure the quality and quantity of the generated models. Importantly, this study provides details on bacterial isolation and infection techniques for GF fish, enabling the efficient creation of GF fish models from larvae to juvenile stages with GF food support. By applying these procedures in biomedical research, scientists can better understand the relationships between intestinal bacterial functions and host health.

Introduction

The microbiota (i.e., Archaea, Bacteria, Eukarya, and viruses) play crucial roles in maintaining host health and contributing to the development of various diseases by influencing physiological and pathological processes through symbiotic interactions within the intestinal barrier, epithelial surface, and mucin functions in individuals1,2,3. The composition of the microbiota across different life stages, from infancy to juvenility, adulthood, and aging, as well as its presence in various locations such as nares, oral, skin, and gut sites, is dynamic....

Protocol

The fish experiments were conducted in accordance with the guidelines of the Animal Care and Use Committee of Chongqing and the Institutional Animal Care and Use Committee of Chongqing Medical University, China, as well as the standards for experimental animals issued by the State Bureau of Quality and Technical Supervision (Approval ID: GB14922-2001 to GBT14927-2001). Zebrafish (Danio rerio, wild type, AB strain) were sourced from the Institute of Hydrobiology, Chinese Academy of Sciences, and maintained in the.......

Representative Results

The GF zebrafish models can be efficiently produced by utilizing the abundant eggs spawned by pairs of zebrafish, with the protocol optimized based on previous GF fish models35. A single 6-well plate can culture approximately 30-48 embryos/larvae, allowing for ample data collection and statistical analysis. After sterile treatment, the GF embryos are cultured in a clean incubator till hatching to larvae at 48-72 h, and changed GZM daily with the detection of collected samples, which is crucial to .......

Discussion

Critical steps within the protocols of GF fish and GF food preparation
During the generation of GF fish models, several critical steps were involved, including the preparation of sterile materials, sterilization of embryos, daily renewal of GZM, collection of various samples, and the sterile examination of each sample using multiple methods. Among these steps, the initial treatment of embryos is fundamental and decisive for the success of GF models. Controlling agents, their concentrations, and tre.......

Acknowledgements

We sincerely thank the support from Chongqing Medical University Talent Project (No. R4014 to DSP and R4020 to PPJ), National Natural Science Foundation of China (NSFC, No.32200386 to PPJ), Chongqing Postdoctoral Innovation Mentor Studio (X7928 DSP), and Program of China-Sri Lanka Joint Center for Water Technology Research and Demonstration by Chinese Academy of Sciences (CAS)/China-Sri Lanka Joint Center for Education and Research by CAS.

....

Materials

NameCompanyCatalog NumberComments
AB-GZMAmphotericin:Solarbio;  kanamycin:Solarbio; Ampicillin:Solarbio.Amphotericin:CAS:1397-89-3;
kanamycin:CAS: 25380-94-0; Ampicillin:CAS: 69-52-313.
49.6 mL GZM, 50 µL amphotericin stock solution (250 µg/mL), 25 µL kanamycin stock solution (10 mg/mL), and 250 µL ampicillin stock solution (20 mg/mL).
1.5 mL, 15 mL, 50 mL EP tubesbiosharpBS-15-MTo collect samples, and hold agents
2.4 g/L NaClOXILONG SCIENTIFIC Co., Ltd.CAS: 7681-52-9Diluted with 8% sodium hypochlorite aqueous solution.
6-well plates, 24-, 48- well platesLABSELECT 11112To culture fish
AeronomasNCBI databaseNo.MK1784992019-JPP-ESN
Anaerobic TSA platestryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
agar powder:BioFroxx.
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
agar powder:9002-18-0.
The TSA plates were prepared with 400 mL medium containing 6 g tryptone, 2 g soy peptone, 2 g NaCl, and 6 g agar powder under the anaerobic system.
Anaerobic work stationGENE SCIENCEE200GBacterial isolation, sterile testing
AnalysisGraphPad Prism 5v6.07To analysis the data
API 20 E kits BioMerieux SA, FranceNo.1005915090Ref 20100 Kits to detect bacterial metabolism
Artemia (Brine shrimp)Shangjia Aquarium Co., Ltd.Aquamaster brandArtemia cysts, and brine shrimp eggs 
Auto cycle system for fish cultureNingbo Hairui Technology Co., LtdNo CatMaintain the fish
AutoclaveZeal WayG154DWSPrepare the materials
BHI AerobicCoolaberCat#PM0640BHI medium was prepared, wherein 100 mL medium included 3.7 g BHI powder.
BHI AnaerobicCoolaberCat#PM0640BHI medium was prepared and divided into anaerobic tubes under the anaerobic system.
Biochemical incubatorLongYue Co., LtdSPXFor fish and plates
Biosafety cabinetHaierHR40-IIA2Sterile treatment and testing
Bleaching agent of 0.02 g/L NaClOXILONG SCIENTIFIC Co., Ltd.CAS: 7681-52-9Working solution with sodium hypochlorite (NaClO) concentration: Diluted with 8% sodium hypochlorite aqueous solution or 166.6 uL 6% sodium hypochlorite with 500 mL distilled water.
Blood platessheep blood:SolarbioCat. NO. TX0030Sterile-defibrinated sheep blood was added into TSA to prepare 5% blood plates.
Cell culture flaskCorning430639To culture fish
CM-Dil dyesMolecular ProbesCat#C7000  To label the bacteria
Constant temperature shaking incubatorPeiving Co., LtdHZQ-X100Bacterial culture
DatabaseNCBIBacteria and Archaea databaseLink: Archaea FTP: ftp://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Archaea/
Bacteria FTP: ftp://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Bacteria/
Disposable Pasteur pipettebiosharpbs-xh-03lUsed to change water, and transfer eggs
Disposable petri dishbiosharpBS-90-DTo culture fish
DNA kitsSolaribioCat#D1600Bacterial genomic DNA extraction kits 
Electric pipetteSCILOGEXLevo meChange water
ExiguobacteriumNCBI databaseNo.MK1785042019-JPP-ESN
GZMSea salt:LANDEBAO Co., Ltd.No CatComposed of 1 L of water and 1.5 mL of sea salt solution (40 g/L), autoclaved. The content of sea salt in the GZM solution was 60 mg/L.
Laboratory pure water systemHitech Co., LtdPrima-S15Prepare the agents
MicroscopeNikonSMZ18With fluorescent light to observe fish larvae
PCR kitsTIANGENCat#ET101Taq DNA Polymerase kit
PipetteLABSELECT sp-013-10Change water
Povidone iodine (PVP-I)AladdinLot#H1217005Aqueous solution povidone iodine 0.4 g/L pure water.
Timing converterPinYi Co., LtdAL-06To regulate the light
TSA platestryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
agar powder:BioFroxx.
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
agar powder:9002-18-0.
TSA plates were prepared with 400 mL medium containing 6 g tryptone, 2 g soy peptone, 2 g NaCl, 6 g agar powder.
TSB Aerobictryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
TSB medium was prepared, wherein 400 mL medium included 6 g tryptone, 2 g soy peptone, and 2 g NaCl.
TSB Anaerobictryptone:Oxoid ;
soy peptone:Solarbio ;NaCl:Biosharp;
tryptone:LP0042B;
soy peptone:Cat#S9500;
NaCl:BS112;
TSB medium was prepared and divided into the anaerobic tubes under the anaerobic system.
Ultra-clean workbenchAirtechSW-CJ-2FDSterile treatment and testing
Ultra-pure flow system for fish cultureMarine Biological Equipment companyNo CatProduce water for fish
VibrioNCBI databaseNo.MK1785012019-JPP-ESN

References

  1. Sieber, M., Traulsen, A., Schulenburg, H., Douglas, A. E. On the evolutionary origins of host-microbe associations. Proc Natl Acad Sci U S A. 118 (9), e2016487118 (2021).
  2. Sommer, F., Backhed, F. The gut microbiota--masters of host de....

Explore More Articles

Germ free ZebrafishGF Zebrafish ModelHost microbiota InteractionZebrafish DevelopmentZebrafish ImmunityMicrobiome Function16S RRNA SequencingGerm free ArtemiaSterile FoodTransparent Zebrafish Embryos

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved