A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Various bacterial pathogens can cause respiratory tract infections and lead to serious health issues if not detected accurately and treated promptly. Rapid and accurate detection of these pathogens via loop-mediated isothermal amplification provides effective management and control of respiratory tract infections in clinical settings.
Respiratory tract infections (RTIs) are among the most common problems in clinical settings. Rapid and accurate identification of bacterial pathogens will provide practical guidelines for managing and treating RTIs. This study describes a method for rapidly detecting bacterial pathogens that cause respiratory tract infections via multi-channel loop-mediated isothermal amplification (LAMP). LAMP is a sensitive and specific diagnostic tool that rapidly detects bacterial nucleic acids with high accuracy and reliability. The proposed method offers a significant advantage over traditional bacterial culturing methods, which are time-consuming and often require greater sensitivity for detecting low levels of bacterial nucleic acids. This article presents representative results of K. pneumoniae infection and its multiple co-infections using LAMP to detect samples (sputum, bronchial lavage fluid, and alveolar lavage fluid) from the lower respiratory tract. In summary, the multi-channel LAMP method provides a rapid and efficient means of identifying single and multiple bacterial pathogens in clinical samples, which can help prevent the spread of bacterial pathogens and aid in the appropriate treatment of RTIs.
Respiratory tract infections (RTIs) caused by bacterial pathogens primarily contribute to morbidity and mortality worldwide1. It is defined as any upper or lower respiratory symptoms accompanied by fever lasting 2-3 days. While upper respiratory infection is more common than lower respiratory infection, chronic and recurrent respiratory tract infections are also common clinical conditions, posing great risks to individuals and placing a significant burden on healthcare systems2. Common bacterial pathogens of RTIs include Streptococcus pneumoniae3, Haemophilus influenzae
All samples for this study were evaluated and approved by the Ethics Review Committee of Guangdong Provincial People's Hospital (Approval Number: KY2023-1114-01). All participants signed written informed consent before the experiments. The reagents and equipment used for the study are listed in the Table of Materials. The abbreviations used in the protocol are listed in Supplementary Table 1.
1. Collection of clinical samples from the lower respirato.......
This experiment employs isothermal amplification technology, conducting reactions on a microfluidic disc chip. The reaction occurs on a microfluidic chip nucleic acid analyzer, employing a fluorescence dye insertion method. The isothermal reaction is performed at a constant temperature of 65 °C, and real-time fluorescence analysis is carried out simultaneously. Positive samples undergo amplification under the action of polymerase with chain displacement functionality, resulting in an S-shaped amplification curve. Th.......
Respiratory tract infections are prevalent hospital-associated infections, imposing severe consequences on patients and escalating mortality rates16. Timely and accurately identifying potential pathogens followed by effective antibiotics is the key to successful treatment and improving prognosis, particularly given the limitations inherent in traditional culture methods17. In this study, we used a LAMP-based method to determine single or multiple infections for fast and pre.......
We greatly appreciated the financial support provided by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515220023) and the Research Foundation for Advanced Talents of Guandong Provincial People's Hospital (Grant No. KY012023293).
....Name | Company | Catalog Number | Comments |
Bath Incubator(MK2000-2) | ALLSHENG | Provide a constant temperature environment | |
Bronchial lavage fluid collector head | TIANPINGHUACHANG | SEDA 20172081375 | Collecting bronchoalveolar lavage fluid |
Fiberoptic bronchoscope | OLYMPUS | SEDA 20153062703 | A flexible bronchoscope equipped with a fiberoptic light source and camera, to visually examine the airways and structures within the lungs. Assist in collecting bronchoalveolar lavage |
HR1500-B2 | Haier | SEDA 20183541642 | Biosafety cabinet |
NAOH | MACKLIN | S817977 | Liquefy viscous lower respiratory tract sample |
Nucleic acid detection kit for respiratory tract pathogens | Capitalbio Technology | SEDA 20173401346 | Testing for bacteria infection |
Nucleic acid extraction reagent | Capitalbio Technology | SEDA 20160034 | For DNA extraction |
RTisochip-W | Capitalbio Technology | SEDA 20193220539 | Loop-mediated Isothermal Amplification |
THERMO ST16R | Thermo Fisher Scientific | SEDA 20180585 | Centrifuge the residual liquid off the wall of the tube. |
Vortex mixer VM-5005 | JOANLAB | For mixing reagent |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved