Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The proposed protocol entails a global approach to assess bone formation in the context of bone regeneration using multimodal analyses. It aims to provide qualitative and quantitative information on new bone formation, enhancing the rigor and validity of basic and pre-clinical investigations.

Abstract

The extensive characterization of tissue mineralization in the context of bone regeneration represents a significant challenge, given the numerous modalities that are currently available for analysis. Here, we propose a workflow for a comprehensive evaluation of new bone formation using a relevant large animal osseous ex vivo explant. A bone defect (diameter = 3.75 mm; depth = 5.0 mm) is created in an explanted sheep femoral head and injected with a macroporous bone substitute loaded with a pro-osteogenic growth factor (bone morphogenetic protein 2 - BMP2). Subsequently, the explant is maintained in culture for a 28-day period, allowing cellular colonization and subsequent bone formation. To evaluate the quality and structure of newly mineralized tissue, the following successive methods are set up: (i) Characterization and high-resolution 3D images of the entire explant using micro-CT, followed by deep learning image analyses to enhance the discrimination of mineralized tissues; (ii) Nano-indentation to determine the mechanical properties of the newly formed tissue; (iii) Histological examinations, such as Hematoxylin/Eosin/Saffron (HES), Goldner's trichrome, and Movat's pentachrome to provide a qualitative assessment of mineralized tissue, particularly with regard to the visualization of the osteoid barrier and the presence of bone cells; (iv) Back-scattering scanning electron microscopy (SEM) mapping with internal reference to quantify the degree of mineralization and provide detailed insights into surface morphology, mineral composition, and bone-biomaterial interface; (v) Raman spectroscopy to characterize the molecular composition of the mineralized matrix and to provide insights into the persistence of BMP2 within the cement through the detection of peptide bonds. This multimodal analysis will provide an effective assessment of newly formed bone and comprehensive qualitative and quantitative insights into mineralized tissues. Through the standardization of these protocols, we aim to facilitate interstudy comparisons and improve the validity and reliability of research findings.

Introduction

Bone defects, whether caused by trauma, tumor resection, congenital anomalies, or infection, represent a major challenge for regenerative medicine. These alterations compromise the structural integrity of the skeletal system, leading to discomfort, functional impairment, and a reduction in patients' quality of life.

To overcome these challenges, innovative bone repair strategies have emerged, with a focus on enhancing osteogenesis and bone tissue regeneration. These approaches include the use of implantable, injectable, or 3D-printable bone substitutes, which can be of natural origin (e.g., bio-sourced macromolecules, animal-derived hyd....

Protocol

This study has been approved by an ethics and animal welfare committee and by the French National Veterinary and Food Administration under number G44171.

1. Preparation and culture of osteochondral explants

  1. Harvest sheep joint specimens from freshly euthanized animals in an aseptic environment. Position the sheep in a supine position and shave the left hind limb. Prepare by disinfecting with alcohol around the knee joint. Use lateral parapatellar arthrotomy to expo.......

Representative Results

A micro-CT image of the explant is shown in Figure 2. Using Manual segmentation cannot optimally separate bone from cement, present in the central canal, using global thresholding. To improve the recognition of trabecular bone and cement, we propose to use deep learning. Deep learning is powerful for recognizing biomaterial characteristics and helps to improve the separation between bone and cement, enabling a better assessment of cement-bone interactions. This is of the utmost importance in.......

Discussion

Repair of bone defects is a major challenge in regenerative medicine to restore mobility, reduce pain, and improve the quality of life of affected individuals. The use of explant models offers a number of advantages compared to in vivo studies for the investigation of bone defect repair. In addition to ethical considerations, this model allows for the rigorous control of experimental conditions and the reduction of biological variability, thereby facilitating the generation of more accurate and reproducible resu.......

Acknowledgements

We want to thank the technical facilities involved in the collection and processing of specimens, including SC3M (SFR Francois Bonamy (UMS 016), University of Nantes), SFR ICAT (University of Angers), BIO3, HiMolA, and SC4BIO. The Inserm UMR_S 1229 RMeS is supported by grants from the French Government through Inserm, Nantes Université, Univ Angers and Oniris VetAgroBio institutions. CL is also grateful to HTL Biotechnology.

....

Materials

NameCompanyCatalog NumberComments
0.20 filtersVWR 28145-501
18 G needle (1,2x40 mm)Sterican4665120
3 mL syringeHENKE-JECT8300005762
37% hydrochloric acid VWR 1.00317.1000 
Acetic acid (glacial) Sigma A6283 
Acetone VWR 20063-365 
Alcian Blue 8GXVWR 361186
Ammonium hydroxideVWR 318612
Apatitic tricalcium phosphate Centre for Biomedical and Healthcare Engineering (Mines Saint Etienne, France)TV26U 
AzophloxineSigma 210633
Benzoyl peroxideSigma 8.01641.0250
BMP2Medtronic InductOs 1.5 mg/mL
Brillant crocein Aldrich 2107507
CTVox Bruker-
DataViewer Skyscan-
Diamond bladeStruersMOD13
Diamond sawStruersAccutom-50
DiaPro Mol B3 diamond solutionStruers40600379
DiaPro Nap B1 diamond solutionStruers40600373
Dibasic sodium phosphate (Na2HPO4)Sigma 102404598
Dibutyl PhtalateChimie-Plus Laboratoires28656
DragonFly software ORS2022.1.0.1231. 
Dulbecco's Modified Eagle Medium (DMEM) high glucose, GlutaMAX(TM), pyruvateThermoFisher Scientific31966-021
Eosine Y- Surgipath Sigma 1002830105
Erythrosin BSigma 102141057
Ethanol absoluteVWR 20820362
Eukitt Dutscher6.00.01.0003.06.01.01
Falcon 50 mLSarstedt62.547.254
Ferric chloride hexahydrate (FeCl3, 6H2O) Merck 1.03943.0250
Fetal Bovine Serum (FBS) EurobioCVFSVF00
Fuchsine acidMerck 1.05231.0025 
Hank's Balanced Salt Solution (HBSS)BioseraMS01NG100J
HematoxylinSigma 86.118.9 
Isostatic pressNova SuissePmax 1500 bars
Laser diffraction granulometry MalvernMastersizer 3000
Light greenProlabo 28947135
Lithium carbonateSigma A13149 
MD-Mol polishing clothStruers40500077
MethylcyclohexaneVWR 8.06147.1000 
Methylcyclohexane VWR 8.06147.1000 
Methylcyclohexane VWR 8.06147.1000 
MethylmethacrylateSigma 8.00590.2500
Micro-CT, micro-scanner BrukerSkyscan 1272
Monobasic sodium phosphate (NAH2PO4)Sigma 71496
MortarFritsch Pulverisette 6
N,N, DimethylanilinSigma 803060
Nanoindentation stationAnton PaarNHT2
ND-Nap polishing clothStruers40500080
OATS Osteochondral Autograft Transfer System Set, 4,75 mmArthrexAR-1981-04S
OATS Osteochondral Autograft Transfer System Set, 8 mmArthrexAR-1981-08S
Orange GRalM15
Paraformaldehyde (PFA)Sigma P6148
Peel-a-way disposable embbedding mouldsPolysciences, Inc18646C-1
Penicillin/Streptomycin (P/S)ThermoFisher Scientific15140122
Phosphate Buffered Saline (PBS)ThermoFisher Scientific10010023
Phosphomolybdic acid Sigma 221856-100 g
Phosphotungstic acidAldrich 12863-5 
Polishing machineSturersDap V
PoupinelMEMMERTTV26U 
Raman microspectrometerRenishawInVia Qontor
Safran du Gâtinais Labonord 11507737
Scanning electron microscopeCarl ZeissEvo LS 10
SEMZeissCarl Zeiss Evo LS10
SiC foils/Grinding papersStruers40400008 (#320), 40400011 (#1000), 40400122 (#2000), 40400182 (#4000)
Silver paintElectron microscopy sciences12686-15
Standard stub with Faraday cup, carbon, aluminium and silicon standardsMicro-Analysis Consultants Ltd8602
T25 flaskCorning430639
XyleneVWR 28975.325
Xylidine PonceauAldrich 19.976-1 

References

  1. Feroz, S., Cathro, P., Ivanovski, S., Muhammad, N. Biomimetic bone grafts and substitutes: A review of recent advancements and applications. Biomed Eng Adv. 6, 100107 (2023).
  2. Tsuji, K., et al.

Explore More Articles

BioengineeringExplantcementmineralizationmicro CTmachine learninghistologySEMnanoindentationRaman spectroscopy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved