Method Article
This video article describes experimental procedures to study long-term plasticity and its associative processes such as synaptic tagging, capture and cross-tagging in the CA1 pyramidal neurons using acute hippocampal slices from rodents.
Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats.
The encoding and storage of information in the brain still remains the most significant and keenly pursued challenge in neuroscience. Over the years, long-term potentiation (LTP) and long-term depression (LTD) have emerged as the leading cellular correlates of memory1,2. These activity dependent changes, which exhibit input specificity and associativity, result in the stabilization of memory traces in the neuronal networks 1,3,4. The maintenance of the two forms of synaptic plasticity requires the synthesis of plasticity-related products (PRPs)5-10. Synapse specificity that involves the interaction of newly synthesized protein only with specific activated synapses expressing LTP or LTD, is critical to memory. This specificity is explained by the concept of ‘Synaptic Tagging and Capture’ (STC), where the PRPs interact with recently active, ‘tagged’ synapses11,12. The STC process offers a framework for associative properties of memories at the cellular level. It provides us with a conceptual basis of how short-term forms of plasticity are transformed into long-lasting forms of plasticity in an associative and time-dependent manner13.
During the process of STC, a strong tetanization in one input that leads to protein synthesis dependent late-LTP, results in the reinforcement of a protein synthesis independent early-LTP induced in another independent input on to the same population of neurons into a persistent one13. The setting of a local synaptic tag by a transient neural activity and the synthesis of the diffusible PRPs by the strong neural activity are the two key events during STC13,14. The capture of the PRPs by the recently potentiated ‘tagged’ synapses is fundamental to the maintenance of long-term potentiation. Many studies have been done to confirm the existence of STC phenomenon15-17 and identify the candidate ‘tags’18 and ‘PRPs’19. Calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase1/2 (ERK1/2); CaMKIV, Protein Kinase M (PKM) and brain-derived neurotrophic factor (BDNF) are some of the candidate molecules for ‘tag’ and ‘PRP’ respectively19-21. The synaptic tagging model has further been expanded to include the positive associative interactions between LTP and LTD - the “synaptic cross-tagging”22. In synaptic cross-tagging, a late LTP/ LTD in one synaptic input transforms the opposite protein synthesis-independent early-LTD/LTP in an independent input into its long-lasting form or vice versa22.
The hippocampal slice preparation is the most widely used model in the studies of long-term synaptic plasticity23,24. Much of the understanding about the concepts of synaptic tagging and cross- tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the labs are still unable to study these processes. Experimental conditions for the preparation of rat hippocampal slices and the recording of stable late-LTP/LTD for extended hours are extremely important to study synaptic tagging/cross-tagging23,25,26. This article describes the detailed experimental procedures for studying long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats.
Bütün hayvan prosedürleri Singapur Ulusal Üniversitesi Kurumsal Hayvan Bakım ve Kullanım Komitesi (IACUC) tarafından onaylanmıştır.
Yapay Beyin Omurilik Sıvısı 1. Hazırlama (ACSF)
Arayüz Odası 2. Hazırlık
NOT: Bir arabirim beyin dilim odası, (Şekil 2B) dilimleri kuluçkaya ve elektrofizyolojik kayıtlar sırasında onları korumak için kullanılan, iki bölmeden oluşmaktadır. Alt bölme, bir sıcaklık kontrol cihazı tarafından 32 ° C 'de muhafaza damıtılmış su sürekli karbojen kabarcıkları içerir.
Akut Hipokampal Dilimleri 3. Hazırlık
NOT: Diseksiyon protokolü soğuk ACSF ve (2) İzolasyon ve hipokampus dilimleme içine hayvana beyin (1) Temizleme oluşur. Nöronlar, canlı kalır izole etmek ve hızlı bir şekilde soğuk ACSF beyin koyun ve bütün tamamlamak için sırayla3-5 dakika içinde dilimleme dahil süreci.
CA3-CA1 Synaptic Cevaplarının 4. Kayıt
NOT: Alan potansiyel kayıt için kullanılan elektrofizyoloji set-up Şekil 2A gösterilmiştir. Bir Faraelektriksel girişim elektrik ayarları düzgün topraklama sonra kontrolü dışında ise günlük kafes şiddetle tavsiye edilir. Daldırılmış ve arayüz odaları çok farklı tipte ticari olarak temin edilebilir. Ancak, arabirim odaları onları dilim sergi daha sağlam sinaptik yanıtları olarak tercih edilmektedir.
Dilim Odası ve Perfüzyon Sistemi 5. Temizlik
Açıklanan metodoloji (Wistar). Bu tür yetişkin farelerin akut hipokampal dilim sinaptik etiketleme ve çapraz yakalama olarak LTP / LTD ve ilişkisel etkileşimlerin uzun süreli formları incelemek için kullanılır olmuştur 23 Bu teknik, hem fareler ile deneyler için etkili olduğu kanıtlanmıştır ve fare çeşitli 30,31 suşları. Metodoloji kadar 8-12 saat istikrarlı LTP kayıtları için başarıyla kullanılmaktadır. 32
Erken LTP (Şekil 3B, dolu daireler S2) ve böylece dönüşüm aksi çürüyen formu (tek giriş (S1) zayıf tetanization tarafından belirlenen 'etiketi' PRPS 'Başka bağımsız ancak örtüşen girdi güçlü tetanization tarafından uyarılan yakalar uzun süreli bir bir (Şekil 3B, açık daireler) içine S1 -LTP) (WTET ile indüklenen erken LTP karşılaştırmak için) 20,33 bkz. Zayıf tarafından yakalanan PRPstetanization grubu etiketi mutlaka STET neden olduğu geç-LTP gelen gerek yoktur, ancak, aynı zamanda ÖİDÖ neden olduğu geç-LTD tarafından sağlanabilir. LTP ve LTD arasındaki olumlu etkileşimin birleştirici Bu tür 'cross-etiketleme / yakalama "olarak adlandırılır. S1 WTET kaynaklı erken LTP S2 ÖİDÖ kaynaklı geç LTD tarafından sağlanan PRPS (Şekil 3C, dolu daireler) yakalayarak geç LTP (Şekil 3C, açık daireler) ile takviye olur. Kendi baz ile karşılaştırıldığında istatistiksel olarak anlamlı kuvvetlenmesi ve depresyon her iki durumda da S1 ve S2 muhafaza edildi (Wilcoxon testi, p <0.05).
Etiket PRP etkileşim oluşması için (zayıf-öncesi güçlü / strong-öncesi zayıf) iki olay arasındaki zaman penceresi 30-60 aralığında kaldığı sürece, iki olayın zamansal sırası sürece çok önemli değil dakika. Bu bir üçüncü bağımsız ama örtüşen sinaptik eklemek akıllıca olacaktırkoymak ve kayıtların istikrarı izlemek için bir temel kontrolü olarak kullanabilirsiniz. LTP / LTD Erken ve geç formları ikna etmek için kullanılan elektriksel stimülasyon protokolleri STC deneylerde kullanmadan önce tutarlılık ve güvenilirlik için tek giriş deneylerinde doğrulanması gerekir. Biz de bu deneylerin başarı dilimleri kalitesine dayanır çünkü protokol açıklanan dilim hazırlık metodolojisi önemini vurgulamak isterim.
Hipokampus diseksiyonu kullanılan Şekil 1. (A) Araçlar: (a) Bandaj makasları (b) İris makaslar (c) Kemik rongeur (d) İnce spatula, Yumuşak (e) Neşter sayısı 11 (f) Orak ölçekleyici (g) -bristle boya fırçası (h) Plastik Pasteur pipeti (i) filtre kağıdı (85mm) (j) filtre kağıdı (30mm) (k) petri ve beher sığdırmak için Cam bardak (l) Alüminyum soğutma blokları(m) Petri kabı. (B) Manuel doku kıyıcı. (a) Platform (b) bıçak tutucu (c) Sürmeli mikrometre, çözünürlük 10 mikron ile kol kesme. Bu rakamın büyük halini görmek için lütfen buraya tıklayınız.
Şekil 2. Elektrofizyoloji kurulumu (A) aşağıdakilerden oluşan uyarıcıları alan potansiyeli kayıtlarında (b), bir diferansiyel yükselteç (c) bir analog-dijital dönüştürücü (d) Osiloskop (e) toplama yazılımı (f) bilgisayar titreşim dayanıklı masa üstü elektrot tutucular> 4x büyütme (h) arayüzü beyin dilim odası (i) ACSF ve karbojen kaynağı (j) sıcaklık kontrolörü (k) için bir perfüzyon sistemi bir aydınlatma kaynağı (l) manipulatör (g) mikroskop. (B) Arayüz beyin dilimodacık. (C) (D) arayüz odasında hipokampal dilimler cam kılcal imzalandı. (E) Paslanmaz çelik elektrot. Bu rakamın büyük halini görmek için lütfen buraya tıklayınız.
Şekil 3. (A) alanı potansiyeli kayıt için bir enine hipokampal kesit ve elektrot konumu şematik gösterimi: Bu gösterimde, iki uyarıcı elektrotlar (S1 ve S2) uyarmak için CA1 bölgesinde in stratum radiatumunun merkezi içinde yerleştirilmiş iki bağımsız fakat birbiriyle örtüşen CA1 piramidal nöronlar üzerine sinaptik girdiler. İki hücre dışı kayıt elektrotları, tek apikal dendritik bölmeden alan EPSP (eksitatör post-sinaptik potansiyel) kaydetmek ve başka piramidal hücreden somatik nüfus başak kaydetmek içinorganları sırasıyla stratum radiatum ve stratum pyramidale yer almaktadır. CA1- cornu ammonis bölgesi 1, CA3- cornu ammonis bölge 3, DG- dentat girus, SC- Schaffer teminat lifleri, S1- uyarıcı elektrot 1, S2-uyarıcı elektrot 2. (B) Zayıf STC incelemek için güçlü paradigma öncesi: Zayıf tetanization (WTET) geç-LTP indüklemek için 30 dk S2 güçlü tetanization (STET) (doldurulmuş daireler), ardından erken LTP indüklemek için (içi boş daireler) S1 uygulanır. S1 erken-LTP etiketleme gösteren geç LTP takviyeli ve çapraz etiketleme incelemek için güçlü paradigma öncesi (n = 6) (C) Zayıf etkileşim yakalama alır. Erken LTP takip S1 (açık daireler) içinde WTET tarafından uyarılan 30 dakika sonra ÖİDÖ kullanılarak S2 geç LTD indüksiyonu (içi dolu daireler). S1, erken LTP çapraz-tagging ve yakalama gösteren 6 saat süren geç LTP dönüştürülür (n = 6). Tek ok erken LTP indüklemek için uygulanan zayıf tetanization temsil eder. Okların Üçüz temsilGeç-LTP indüklemek için güçlü bir tetanization. Kırık ok ÖİDÖ geç LTD indüklemek için temsili sinaptik girişine tatbik edildiği zaman noktasını temsil eder. Hata çubukları SEM gösteriyor. Bu rakamın büyük halini görmek için lütfen buraya tıklayınız.
Akut hipokampal dilim LTP ve STC ve çapraz yakalama gibi diğer fonksiyonel plastisite süreçlerinin çalışma için mükemmel bir model sistemidir. Bu hipokampal devrelerin laminer yapısal ağının çok hassas elektrot konumları izin verir ve bir kan-beyin bariyeri olmadan, yanında hızlı nörofarmakolojik manipülasyon için açık bir platform sunuyor korur.
Bu makalede, genç yetişkin sıçanlardan uygulanabilir akut hipokampal dilim hazırlanması için bir metodoloji tarif eder ve STC ve çapraz etiketleme araştırmak için kullanılması. Önceki araştırmalar hayvanların cinsiyet ve yaş elektrofizyoloji çalışmalarında kullanılmak üzere düşünülmesi gereken önemli faktörlerdir vurguladı. Tam olarak ifade yetişkin reseptör fonksiyonları (5-7 hafta arası erkek Wistar sıçan) ile 27,28 nedenle genç erişkin hayvanların kullanılmaktadır. 23 asimetriler Sağ ve sol hipokampus arasındaki bağlantılarda kemirgenler 29 not edilmiş veNMDA reseptör ifadesinde önemli farklılıklar oyuk 34 olarak rapor edilmiştir. Biz, ancak. Önceki LTP çalışmalar ile uyumlu olması için 23,32 doğru hipokampus kullanmış hipokampi biri sürece kıvamlılık muhafaza edilir olarak kullanılabilir.
Herhangi bir protokolde olduğu gibi, tecrit ve doku, gergin hasarlı, kuru veya hipoksik hale değil hızlı prosedürleri dilimleme ama özen gerçekleştirmek için çok önemlidir. PH, sıcaklık ve çözeltilerinin iyonik bileşim içinde varyasyonlar dilimleri ve sonuçların canlılığı üzerinde derin bir etkiye sahip olabilir. Bu nedenle bu tür varyasyonlar kaçınılmalıdır. Bu hazırlık adımları sırasında oluşan glutamat reseptör-bağımlı kalsiyum salma tersinmez sinir dokusunda 35,36, 37 protein sentezini etkileyebilir gözlenmiştir. Manuel doku dilimleme kullanma vi kıyasla çok hızlı bir şekilde tamamlanması süreci izin vererek bu en aza indirmek için yardımcı olabilirbraslicers. Ancak, birçok laboratuvarlar da etkili bir dilim canlılığını korumak için gerekli önlemler ile vibraslicers kullanın. Dikkate diğer önemli faktör deneyler başlamadan önce uzun kuluçka dönemi olduğunu. Bu rahatsızlık hazırlama 23. sırasında neden sonra dilimler metabolik devlet ve kinaz aktivasyon düzeylerinde istikrar sağlamak için gerçekten çok önemli olduğu not edilmiştir. Bu stabilite, uzun süreli kayıtlar tutarlılık için gereklidir. Bu gözlem yeniden vurgulamak ve yaklaşık 3 saat uzun inkübasyon saatleri öneririz.
Stimülasyon parametreleri çeşitli LTP sebep olduğu bilinen, ancak her durumda ortaya moleküler mekanizmalar (inceleme için 38 bakınız) aynı olmayabilir. Bu dayanıklılık ve sırayla, sinaptik etiketleme ve yakalama deneylerin sonuçlarını etkileyebilir, LTP diğer özelliklerini etkileyebilir. Dolayısıyla stimülasyon paradigmalar ve özelliklerini doğrulamak için önemlidirortaya çıkardı LTP performans laboratuvar koşullarında ve tutarlılığı korumak.
Biz genellikle çok büyük presinaptik lif yaylım ile ve maksimal 0,5 mV daha az fEPSPs ve kayıtlar da reddedilir sırasında lif voleybolu önemli değişiklikleri içeren deneyleri deneyler düşünmüyoruz. Bundan başka, iki ya da üç yol yol deneyler ise, bu yolun bağımsızlık sağlamak için önemlidir. Bu eşleştirilmiş darbe kolaylaştırma protokolü 28 ile yapılabilir.
Arabirim kayıt sistemlerinden biri dezavantajı odası ve çevre arasındaki sıcaklık ve nem farklılıklar nedeniyle uzun kayıt saatlerinde elektrotlar üzerinde yoğunlaşma damlacıklarının oluşumu. Bu damlacıklar dikkatli bir şekilde, zaman zaman, lekelenen gerekir. Aksi halde damlacıklar dilimleri üzerine damla ve rahatsızlığı veya sinyallerin hatta kaybına neden olabilir. Biz genellikle bu b mücadeley ustaca elektrotları dokunmadan, bir ince filtre kağıdı fitil kullanılarak mikroskop altında güdümlü damlacıkların blot. Ancak, en iyi çözüm gibi Edinburgh araştırmacılar Üniversitesi tarafından geliştirilen ETC sistemi gibi merkezi bir ısıtma sistemi, kullanmak olacaktır.
Bir sonuç not, metodolojiler çeşitli farklı deneysel amaçlar için hipokampal dilim hazırlanmasında kullanılan dünya çapında laboratuarlarda var. Prosedürün birbirleri üzerinde bazı avantajlar sunmaktadır. Bir dikkatlice deney amacına uygun protokol dakika ayrıntıları optimize etmek gerekiyor. Biz bu makalede bu tür STC ve çapraz yakalama gibi geç-ilişkisel süreçleri incelemek için metodolojinin bazı yönlerini geliştirmeye yardımcı umuyoruz.
Bu video makalede Açık erişim Cerebos Pasifik Limited tarafından desteklenmektedir.
This video article is sponsored by Cerebos Pacific Limited. This work is supported by National Medical Research Council Collaborative Research Grant (NMRC-CBRG-0041/2013) and Ministry of Education Academic Research Funding (MOE AcRF- Tier 1 - T1-2012 Oct -02).
Name | Company | Catalog Number | Comments |
I. Dissection Tools | |||
1. Bandage scissors | KLS Martin, Germany | 21-195-23-07 | |
B-Braun/Aesculap, Germany | LX553R | ||
2. Iris scissors | B-Braun/Aesculap, Germany | BC140R, | |
BC100R | |||
3. Bone rongeur | World Precision Instruments (WPI), Germany | 14089-G | |
4. Scalpel | World Precision Instruments (WPI), Germany; | 500236-G | |
B-Braun/Aesculap, Germany | |||
BB73 | |||
5. Scalpel blade#11 | B-Braun/Aesculap, Germany | BB511 | |
6. Sickle scaler | KLS Martin, Germany | 38-685-00 | |
7. Angled forceps | B-Braun/Aesculap, Germany | BD321R | |
8. Anesthetizing/Induction chamber | MIP Anesthesia Technologies (Now, Patterson Scientific), Oregon | AS-01-0530-LG | |
II. ACSF component chemicals | |||
1. Sodium chloride (NaCl) | Sigma-Aldrich | S5886 | |
2. Potassium chloride (KCl) | Sigma-Aldrich | P9541 | |
3. Magnesium sulphate heptahydrate (MgSO4.7H20) | Sigma-Aldrich | M1880 | |
4. Calcium chloride dihydrate (CaCl2.2H2O) | Sigma-Aldrich | C3881 | |
5. Potassium phosphate monobasic (KH2PO4) | Sigma-Aldrich | P9791 | |
6. Sodium bicarbonate (NaHCO3) | Sigma-Aldrich | S5761 | |
7. D-Glucose anhydrous (C6H12O6) | Sigma-Aldrich | G7021 | |
III. Electrophysiology Instruments | |||
1. Microscope | Olympus, Japan | Model SZ61 | |
2. Temperature Controller | Scientific Systems Design Inc. Canada | PTC03 | |
3. Differential AC Amplifier | AM Systems, USA | Model 1700 | |
4. Isolated Pulse Stimulator | AM Systems, USA | Model 2100 | |
5. Oscilloscope | Rhode & Schwarz | HM0722 | |
6. Digital-Analog Converter | Cambridge Electronic Design Ltd. Cambridge, UK | CED-Power 1401-3 | |
7. Interface Brain Slice Chamber | Scientific Systems Design Inc. Canada | BSC01 | |
8. Tubing Pump | Ismatec, Idex Health & Science, Germany | REGLO-Analog | |
9. Carbogen Flowmeter | Cole-Parmer | 03220-44 | |
10. Fiber Light Illuminator | Dolan-Jenner Industries | Fiber Lite MI-150 | |
11. Micromanipulators | Marzhauser Wetzlar, Germany | 00-42-101-0000 (MM-33) | |
00-42-102-0000 (MM-32) |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır