A subscription to JoVE is required to view this content. Sign in or start your free trial.
The protocol presented in this paper utilizes route optimization, balanced acceptance sampling, and ground-level and unmanned aircraft system (UAS) imagery to efficiently monitor vegetation in rangeland ecosystems. Results from images obtained from ground-level and UAS methods are compared.
Rangeland ecosystems cover 3.6 billion hectares globally with 239 million hectares located in the United States. These ecosystems are critical for maintaining global ecosystem services. Monitoring vegetation in these ecosystems is required to assess rangeland health, to gauge habitat suitability for wildlife and domestic livestock, to combat invasive weeds, and to elucidate temporal environmental changes. Although rangeland ecosystems cover vast areas, traditional monitoring techniques are often time-consuming and cost-inefficient, subject to high observer bias, and often lack adequate spatial information. Image-based vegetation monitoring is faster, produces permanent records (i.e., images), may result in reduced observer bias, and inherently includes adequate spatial information. Spatially balanced sampling designs are beneficial in monitoring natural resources. A protocol is presented for implementing a spatially balanced sampling design known as balanced acceptance sampling (BAS), with imagery acquired from ground-level cameras and unmanned aerial systems (UAS). A route optimization algorithm is used in addition to solve the ‘travelling salesperson problem’ (TSP) to increase time and cost efficiency. While UAS images can be acquired 2–3x faster than handheld images, both types of images are similar to each other in terms of accuracy and precision. Lastly, the pros and cons of each method are discussed and examples of potential applications for these methods in other ecosystems are provided.
Rangeland ecosystems encompass vast areas, covering 239 million ha in the United States and 3.6 billion ha globally1. Rangelands provide a wide array of ecosystem services and management of rangelands involves multiple land uses. In the western US, rangelands provide wildlife habitat, water storage, carbon sequestration, and forage for domestic livestock2. Rangelands are subject to various disturbances, including invasive species, wildfires, infrastructure development, and natural resource extraction (e.g., oil, gas, and coal)3. Vegetation monitoring is critical to sustaining resource management w....
1. Defining area of study, generating sample points and travel path, and field preparation
UAS image acquisition took less than half the time of ground-based image collection, while the analysis time was slightly less with ground-based images (Table 1). Ground-based images were higher resolution, which is likely the reason they were analyzed in less time. Differences in walking path times between sites were likely due to start and end points (launch site) being located closer to Site 1 than Site 2 (Figure 1). Differences in acquisition time between platforms was p.......
The importance of natural resource monitoring has long been recognized14. With increased attention on global environmental issues, developing reliable monitoring techniques that are time- and cost-efficient is increasingly important. Several previous studies showed that image analysis compares favorably to traditional vegetation monitoring techniques in terms of time, cost, and providing valid and defensible statistical data6,31. Ground-le.......
This research was funded in majority by Wyoming Reclamation and Restoration Center and Jonah Energy, LLC. We thank Warren Resources and Escelara Resources for funding the Trimble Juno 5 unit. We thank Jonah Energy, LLC for continuous support to fund vegetation monitoring in Wyoming. We thank the Wyoming Geographic Information Science Center for providing the UAS equipment utilized in this study.
....Name | Company | Catalog Number | Comments |
ArcGIS | ESRI | GPS Software | |
DJI Phantom 4 Pro | DJI | UAS | |
G700SE | Ricoh | GPS-equipped camera | |
GeoJot+Core | Geospatial Experts | GPS Software | Used to extract image metadata |
Juno 5 | Trimble | Handheld GPS device | |
Litchi Mission Hub | Litchi | Mission Hub Software | We chose Litchi for its terrain awareness and its ability to plan robust waypoint missions |
Program R | R Project | Statistical analysis/programming software | |
SamplePoint | N/A | Image analysis software |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved