A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This technique provides a guide to inflicting ex vivo wounds, performing laser capture microdissection and quantifying changes in gene expression related to poor wound healing processes in diabetes using clinically relevant human tissue.
The global prevalence Type 2 diabetes mellitus (T2DM) is escalating at a rapid rate. Patients with T2DM suffer from a multitude of complications and one of these is impaired wound healing. This can lead to the development of non-healing sores or foot ulcers and ultimately to amputation. In healthy individuals, wound healing follows a controlled and overlapping sequence of events encompassing inflammation, proliferation, and remodelling. In T2DM, one or more of these steps becomes dysfunctional. Current models to study impaired wound healing in T2DM include in vitro scratch wound assays, skin equivalents, or animal models to examine molecular mechanisms underpinning wound healing and/or potential therapeutic options. However, these do not fully recapitulate the complex wound healing process in T2DM patients, and ex vivo human skin tests are problematic due to the ethics of taking punch biopsies from patients where it is known they will heal poorly. Here, a technique is described whereby expression profiles of the specific cells involved in the (dys)functional wound healing response in T2DM patients can be examined using surplus tissue discarded following amputation or elective cosmetic surgery. In this protocol samples of donated skin are collected, wounded, cultured ex vivo in the air liquid interface, fixed at different time points and sectioned. Specific cell types involved in wound healing (e.g., epidermal keratinocytes, dermal fibroblasts (papillary and reticular), the vasculature) are isolated using laser capture microdissection and differences in gene expression analyzed by sequencing or microarray, with genes of interest further validated by qPCR. This protocol can be used to identify inherent differences in gene expression between both poorly healing and intact skin, in patients with or without diabetes, using tissue ordinarily discarded following surgery. It will yield greater understanding of the molecular mechanisms contributing to T2DM chronic wounds and lower limb loss.
The incidence of type 2 diabetes is growing globally, driven by an obesity epidemic and physical inactivity. Poor wound healing is common in these patients and up to 25% of patients will develop a chronic non-healing wound1. The mechanisms underpinning this are complex and incompletely understood, limiting the discovery rate for new therapeutics. One of the contributing factors to this is the lack of a suitable model for studying wound healing in type 2 diabetes patients. Thus, the purpose of this method is to provide a physiologically relevant ex vivo model for examining wound healing in those at risk of chronic wounds, allowing for t....
This protocol relies on the provision of human surgical tissue. Ethical approval and informed patient consent were obtained prior to experimentation, and the study conformed with the principles outlined in the Declaration of Helsinki.
1. Collection of tissue and ex vivo wounding
Following the protocol, a 48 h timepoint was chosen to generate representative results. The creation of the initial wound in surplus tissue from elective cosmetic surgery can be seen in Figure 2A where the excised wound is clearly visible. Haematoxylin and eosin staining confirms that this has generated a full thickness wound (Figure 2B). After 48 h, partial closure of the wound is visible under the light microscope (Figure 2C). His.......
As the incidence of chronic disorders such as type 2 diabetes increases globally, the need for techniques that can facilitate pathophysiologically relevant studies becomes more urgent. The protocol described above provides a standardized method for examining transcriptomic data from ex vivo healing wounds utilizing human tissue.
This protocol is dependent on the provision of surplus clinical tissue for which ethical permission has been granted from the relevant authority, and from pat.......
ICP was supported by the European Commission 7th Framework Programme for Research and Technical Development - Marie Curie Innovative Training Networks (ITN), Grant agreement no.: 607886. RW was supported by Aveda, Hair Innovation & Technology, USA. RB, SS were supported by the Centre of Skin Sciences, University of Bradford.
....Name | Company | Catalog Number | Comments |
Arcturus RiboAmp PLUS kit | ThermoFisher Scientific | KIT0521 | RNA amplification kit |
Diffuser Caps 0.5mL | MMI | K10028161 | Laser capture microdissection caps; 50 pack |
Dulbecco’s Modified Eagle Medium (DMEM) | Sigma-Aldrich | D6046 | With 1000 mg/L glucose, L-glutamine, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture |
Foetal Bovine Serum | Thermo Fisher Scientific | 10270106 | Cell culture supplement |
H&E Staining Kit Plus | MMI | K10028305 | Rnase-free haematoxylin and eosin staining kit |
High capacity cDNA reverse transcription kit | Applied Biosystems | 4368814 | Reverse transcription kit |
L-glutamine | Thermo Fisher Scientific | 25030149 | Cell culture supplement |
MembraneSlides | MMI | K10028153 | Laer capture microdissection slides; 5 per box |
Netwell Mesh Insert | Corning | 3479 | Cell culture insert |
Penicillin-Streptomycin-Fungizone | Thermo Fisher Scientific | 15070-063 | Cell culture supplement |
15290-026 | |||
OCT | Tissue-Tek Sakura | 4583 | Cryostat-compatible cutting medium |
PBS | Thermo Fisher Scientific | 10209252 | Five tablets per 100ml sterile water and then autoclaved for cell culture use |
RNeasy Micro Kit | Qiagen | 74004 | RNA extraction kit |
RNase Away | Sigma-Aldrich | 83931 | RNase spray |
Sterile blades | Scientific Laboratory Supplies | INS4974 | Tissue dissection implements |
Support Slide | MMI | K10028159 | Laser capture microdissection support slide, RNase-free |
Surgical scissors | Scientific Laboratory Supplies | INS4860 | Tissue dissection implements |
Surgical forceps | Scientific Laboratory Supplies | INS2026 | Tissue dissection implements |
SYBR Green Supermix | Applied Biosystems | 4344463 | Quantitative PCR mastermix |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved