JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Ferritinophagy: Assessing the Selective Degradation of Iron by Autophagy in Human Fibroblasts

Published: February 23rd, 2024

DOI:

10.3791/65110

1Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen

Mutations in the autophagy gene WDR45/WIPI4 are the cause of beta-propeller-associated neurodegeneration (BPAN), a subtype of human diseases known as neurodegeneration with brain iron accumulation (NBIA) due to the presence of iron deposits in the brains of patients. Intracellular iron levels are tightly regulated by a number of cellular mechanisms, including the critical mechanism of ferritinophagy. This paper describes how ferritinophagy can be assessed in primary, skin-derived human fibroblasts. In this protocol, we use iron-modulating conditions for inducing or inhibiting ferritinophagy at the cellular level, such as the administration of bafilomycin A1 to inhibit lysosome function and ferric ammonium citrate (FAC) or deferasiox (DFX) treatments to overload or deplete iron, respectively. Such treated fibroblasts are then subjected to high-throughput imaging and CellProfiler-based quantitative localization analysis of endogenous ferritin and autophagosomal/lysosomal markers, here LAMP2. Based on the level of autophagosomal/lysosomal ferritin, conclusions can be drawn regarding the level of ferritinophagy. This protocol can be used to assess ferritinophagy in BPAN patient-derived primary fibroblasts or other types of mammalian cells.

Explore More Videos

Ferritinophagy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved