Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

In dieser Studie beschreiben wir Methoden der Dezellularisierung, der physikalischen Charakterisierung, der Bildgebung und der in vivo Implantation von pflanzlichen Biomaterialien sowie Methoden zur Zellaussaat und Differenzierung in den Scaffolds. Die beschriebenen Methoden ermöglichen die Evaluierung von pflanzlichen Biomaterialien für Anwendungen im Bone Tissue Engineering.

Zusammenfassung

Pflanzliche Zellulose-Biomaterialien werden in verschiedenen Tissue-Engineering-Anwendungen eingesetzt. In-vivo-Studien haben die bemerkenswerte Biokompatibilität von Scaffolds aus Zellulose aus natürlichen Quellen gezeigt. Darüber hinaus besitzen diese Gerüste strukturelle Eigenschaften, die für mehrere Gewebe relevant sind, und sie fördern die Invasion und Proliferation von Säugetierzellen. Neuere Forschungen mit dezellularisiertem Apfelhypanthium-Gewebe haben die Ähnlichkeit seiner Porengröße mit der von trabekulärem Knochen sowie seine Fähigkeit, die osteogene Differenzierung effektiv zu unterstützen, gezeigt. In der vorliegenden Studie wurde das Potenzial von aus Äpfeln gewonnenen Zellulosegerüsten für Anwendungen im Bereich Bone Tissue Engineering (HdO) untersucht und ihre mechanischen Eigenschaften in vitro und in vivo bewertet. MC3T3-E1-Präosteoblasten wurden in aus Äpfeln gewonnenen Zellulosegerüsten ausgesät, die dann auf ihr osteogenes Potenzial und ihre mechanischen Eigenschaften untersucht wurden. Die alkalische Phosphatase und die Alizarinrot-S-Färbung bestätigten die osteogene Differenzierung in Scaffolds, die in Differenzierungsmedium kultiviert wurden. Die histologische Untersuchung zeigte eine weit verbreitete Zellinvasion und Mineralisierung über die Scaffolds hinweg. Die Rasterelektronenmikroskopie (REM) zeigte mineralische Aggregate auf der Oberfläche der Gerüste, und die energiedispersive Spektroskopie (EDS) bestätigte das Vorhandensein von Phosphat- und Kalziumelementen. Trotz eines signifikanten Anstiegs des Elastizitätsmoduls nach der Zelldifferenzierung blieb er jedoch niedriger als der von gesundem Knochengewebe. In-vivo-Studien zeigten die Zellinfiltration und die Ablagerung von extrazellulärer Matrix innerhalb der dezellularisierten Apfelgerüste nach 8-wöchiger Implantation in die Schädelknochen der Ratte. Darüber hinaus war die Kraft, die erforderlich war, um die Gerüste aus dem Knochendefekt zu entfernen, vergleichbar mit der zuvor berichteten Frakturbelastung des nativen Schädelknochens. Insgesamt bestätigt diese Studie, dass aus Äpfeln gewonnene Zellulose ein vielversprechender Kandidat für HdO-Anwendungen ist. Die Unähnlichkeit zwischen seinen mechanischen Eigenschaften und denen von gesundem Knochengewebe kann seine Anwendung jedoch auf Szenarien mit geringer Belastung beschränken. Zusätzliche strukturelle Umgestaltungen und Optimierungen können erforderlich sein, um die mechanischen Eigenschaften von aus Äpfeln gewonnenen Zellulosegerüsten für tragende Anwendungen zu verbessern.

Einleitung

Große Knochendefekte, die durch eine Verletzung oder Krankheit verursacht werden, erfordern oft Biomaterialtransplantate für eine vollständige Regeneration1. Derzeitige Techniken zur Verbesserung der Regeneration von Knochengewebe verwenden regelmäßig autologe, allogene, xenogene oder synthetische Transplantate2. Bei der autologen Knochentransplantation, die als "Goldstandard" zur Reparatur großer Knochendefekte gilt, wird dem Patienten Knochen entnommen. Dieses Transplantationsverfahren hat jedoch mehrere Nachteile, darunter Größen- und Formbeschränkungen, Gewebeverfügbarkeit und Morbidität an der Probenahmestelle

Protokoll

Die Versuchsprotokolle wurden vom Tierschutzausschuss der Universität Ottawa geprüft und genehmigt.

1. Vorbereitung des Gerüsts

  1. McIntosh-Äpfel (Canada Fancy) mit einem Mandolinenhobel in 8 mm dicke Scheiben schneiden. Das Hypanthiumgewebe der Apfelscheiben in 5 mm x 5 mm große Quadrate schneiden.
  2. Die quadratischen Proben werden 2 Tage lang in 0,1%iges Natriumdodecylsulfat (SDS) gelegt.
  3. Waschen Sie die dezellularisierten Proben mit deionisiertem Wasser und inkubieren Sie sie über Nacht bei Raumtemperatur (RT) in 100 mM CaCl2, um das restliche Tensid zu entfernen.
  4. Sterilisier....

Repräsentative Ergebnisse

Porengrößenmessung, Zellverteilung und In-vitro-Mineralisierung (Abbildung 1 und Abbildung 2)
Die vollständige Entfernung der nativen zellulären Bestandteile der Apfelgewebegerüste wurde nach der Behandlung der Gerüste mit SDS und CaCl2 erreicht (Abbildung 1A). Die Scaffolds wiesen eine hochporöse Struktur auf, die mittels konfokaler Mikroskopie bestätigt wurde. Die Quantifizierung der.......

Diskussion

Mehrere In-vitro- und In-vivo-Studien haben die Biokompatibilität von pflanzlicher Cellulose und ihre potenzielle Verwendung im Tissue Engineeringnachgewiesen 14,15,16,18,19,20, insbesondere für die osteogene Differenzierung20,21. Ziel der vorliege.......

Offenlegungen

Erklärung zu Interessenkonflikten: M.L.L., M.T. R.J.H., C.M.C., I.C. und A.P. sind Erfinder von Patentanmeldungen, die von der University of Ottawa und Spiderwort Inc. eingereicht wurden und die Verwendung von pflanzlicher Zellulose für HdO-Anwendungen betreffen. M.L.L., R.J.H., C.M.C. und A.P. haben finanzielle Beteiligungen an Spiderwort Inc.

Danksagungen

Finanziert wurde das Projekt vom Natural Sciences and Engineering Research Council of Canada (NSERC) (Discovery Grant) und von der Li Ka Shing Foundation. M.L.L. wurde vom TalentEdge-Programm der Ontario Centers of Excellence unterstützt, und R.J.H. wurde durch ein NSERC-Postgraduiertenstipendium und ein Ontario Graduate Scholarship (OGS) unterstützt.

....

Materialien

NameCompanyCatalog NumberComments
4′,6-diamidino-2-phenylindoleThermoFisherD1306DAPI
5-bromo-4-chloro-3'-indolyphosphate and nitro-blue tetrazoliumSigma-AldrichB5655BCIP/NBT
Alizarin red SSigma-AldrichA5533ARS
Ascorbic acidSigma-AldrichA4403Cell Culture
Calcium ChlorideThermoFisherAA12316CaCl2
Calcofluor WhiteSigma-Aldrich18909
Dental drillSurgical tool
EthanolThermoFisher615095000
Fetal bovine serumHyclone LaboratoriesSH30396FBS
FormalinSigma-AldrichHT50112810% Formalin
Goldner's trichrome stainSigma-Aldrich1.00485GTC
Hematoxylin and eosin stainFisher ScientificNC1470670H&E
High-speed resonant confocal laser scanning microscopeNikonNikon Ti-E A1-R
Hydrochloric acidSigma-Aldrich258148
ImageJ softwareNational Institutes of Health
Irrigation salineBaxterJF71230.9% NaCl
MC3T3-E1 Subclone 4 cellsATCCCRL-2593Pre-osteoblast cells
McIntosh applesCanada Fancy grade
Methyl methacrylateSigma-AldrichM55909Histological embedding
Minimum Essential MediumThermoFisherM0894α-MEM
ParaformaldehydeFisher ScientificO40424%; PFA
Penicillin/StreptomycinHyclone LaboratoriesSV30010Cell Culture
Periodic acidSigma-Aldrich375810
Phosphate buffered salineHyclone Laboratories2810305PBS; without Ca2+ and Mg2+
Propidium iodideInvitrogenp3566
Scanning electron microscopeJEOLJSM-7500F FESEMSEM and EDS
Slide scanner microscopeZeissAXIOVERT 40 CFL
Sodium dodecyl sulfateFisher ScientificBP166SDS
Sodium metabisulphiteSigma-Aldrich31448
Sodium phosphateThermoFisherBP329
Sprague-Dawley ratsCharles-River Laboratories400Male
SuturesEthiconJ494G4-0
TrephineACE Surgical Supply Co583-01825-mm diameter
Triton-X 100ThermoFisher807423
TrypsinHyclone LaboratoriesSH30236.02Cell Culture
TweenFisher ScientificBP337
Universal compression DeviceCellScaleUniVert
Von Kossa stainSigma-Aldrich1.00362Histology

Referenzen

  1. Schmitz, J. P., Hollinger, J. O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedics and Related Research. 205, 299-308 (1986).
  2. Yu, X., Tang, X., Gohil, S. V., Laurencin, C. T.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Diesen Monat in JoVEAusgabe 204

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten